轨道车辆智能运维技术发展及应用现状  被引量:5

Development and application of intelligent operation and maintenance technology for rail vehicle

在线阅读下载全文

作  者:苑永祥 蹇波 唐松铨 秦天宇 韩斌 吴圣川[1] YUAN Yongxiang;JIAN Bo;TANG Songquan;QIN Tianyu;HAN Bin;WU Shengchuan(State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu 610031,China;Institute of Rail Transit,Tongji University,Shanghai 200092,China)

机构地区:[1]西南交通大学牵引动力国家重点实验室,四川成都610031 [2]同济大学铁道与城市轨道交通研究院,上海200092

出  处:《电力机车与城轨车辆》2023年第1期12-22,共11页Electric Locomotives & Mass Transit Vehicles

基  金:国家自然科学基金重大项目(12192201);四川省国际港澳台科技创新合作项目(2022YFH0015)。

摘  要:我国轨道交通车辆保有量巨大,基础设施建设投入日益增加,如何满足车辆运行安全可靠、维修工作经济高效及维修资源优化配置是当前重要研究课题。轨道车辆智能运维技术为其关键零部件的故障诊断、寿命预测与健康管理提供了重要支撑。文章根据车辆运维现状,结合轨道交通发展趋势与应用需求,阐述了轨道车辆智能运维技术要求及状态修的基础条件,对故障预测与健康管理、车辆状态感知、网络实时通信、大数据云平台等智能运维应用的关键技术进行了分析,并展望了其发展方向和面临的挑战。China’s rail vehicle market is huge and growing rapidly. The scale of infrastructure construction is increasing with each passing day. Meanwhile, how to meet the safe and reliable vehicle operating performance,economic and efficient maintenance work and reasonable allocation of maintenance resources is an important research topic in the rail transit industry. The intelligent operation and maintenance technology for rail vehicle provides important support for fault detection, life prediction and health management of its key components.According to the current situation of vehicle operation and maintenance, based on the development trend and application demand of rail transportation, the technical demands of rail vehicle intelligent operation and maintenance and the basic conditions of condition-based maintenance are described. The key technologies of intelligent operation and maintenance application such as fault prediction and health management, vehicle status awareness, real-time network communication and big data cloud platform are analyzed. Finally, looking ahead to the future development direction and the challenges faced.

关 键 词:智能运维 轨道车辆 状态修 故障诊断 健康管理 

分 类 号:U270[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象