Hypergraph Regularized Deep Autoencoder for Unsupervised Unmixing Hyperspectral Images  

在线阅读下载全文

作  者:张泽兴 杨斌 ZHANG Zexing;YANG Bin(School of Computer Science and Technology,Donghua University,Shanghai 201620,China)

机构地区:[1]School of Computer Science and Technology,Donghua University,Shanghai 201620,China

出  处:《Journal of Donghua University(English Edition)》2023年第1期8-17,共10页东华大学学报(英文版)

基  金:National Natural Science Foundation of China(No.62001098);Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.2232020D-33)。

摘  要:Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms.

关 键 词:hyperspectral image(HSI) spectral unmixing deep autoencoder(AE) hypergraph learning 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象