检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘阳[1] 周笛 盛敏[1] 李建东[1] 郝时光[2] 郑晓天[2] LIU Yang;ZHOU Di;SHENG Min;LI Jiandong;HAO Shiguang;ZHENG Xiaotian(The State Key Laboratory of Integrated Service Networks,Xidian University,Xi’an 710071,China;Communications and Navigation Satellite General Department,China Academy of Space Technology,Beijing 100094,China)
机构地区:[1]西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西西安710071 [2]中国空间技术研究院通信与导航卫星总体部,北京100094
出 处:《天地一体化信息网络》2023年第1期2-11,共10页Space-Integrated-Ground Information Networks
基 金:国家自然科学基金资助项目(No.U19B2025,No.62121001,No.62001347);陕西省重点研发计划(No.2022ZDLGY05-02)。
摘 要:测控技术是保障星座系统高效运维和管理的关键技术。近年来,随着星座规模的不断扩大,逐步形成了巨型星座系统,使得对星座的测控需求呈现爆发式的增长,从而对星座系统测控任务的完成量提出了新的要求。首先分析巨型星座系统测控任务约束和地面测控站设备约束并给出问题建模;其次提出一种地面站Agent基于学习规划片段的交互方式,通过引入约束惩罚算子和多地面站联合惩罚算子设计优化的目标函数;最后,提出一种多地面站Agent强化学习算法以求解多地面站协同任务分配策略。仿真结果显示,任务规模较大时,在文中提到的不同场景下该方法较传统算法有12%~20%的增益。Measurement and control technology is the key technology to ensure the effi cient operation,maintenance and management of the constellation system.In recent years,with the continuous expansion of the constellation scale,mega-constellation system has gradually formed,which makes the demand for constellation measurement and control show an explosive growth,which puts forward new requirements for the completion of the constellation system measurement and control tasks.Firstly,the constraints of the mega-constellation system measurement and control tasks and the equipment constraints of the ground measurement and control station were analyzed,and the problem modeling was given;Secondly,an interaction method of the ground station agent based on the learning planning segment was proposed,by introduced the constraint penalty operator and the multi-ground station joint the penalty operator was designed to optimized the objective function.Finally,a multi-ground station Agent reinforcement learning algorithm was proposed to solved the multi-ground station cooperative task assignment strategy.Simulation experiments showed that when the task scale was large,the method had a gain of 12%~20%compared with the traditional algorithm in the diff erent scenarios mentioned.
关 键 词:巨型星座 测控任务规划 多地面站协同 多AGENT强化学习
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.17.93