检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈昭庆[1] 赵军宾 闫科晔 武岳[2] 张铎 苏宁 CHEN Zhaoqing;ZHAO Junbin;YAN Keye;WU Yue;ZHANG Duo;SU Ning(School of Civil Engineering and Architecture,Northeast Electric Power University,Jilin 132012,China;School of Civil Engineering,Harbin Institute of Technology,Harbin 150090,China;Tianjin Research Institute for Water Transport Engineering of China Ministry of Transport,Tianjin 300456,China)
机构地区:[1]东北电力大学建筑工程学院,吉林吉林132012 [2]哈尔滨工业大学土木工程学院,黑龙江哈尔滨150090 [3]交通运输部天津水运工程科学研究所,天津300456
出 处:《建筑结构学报》2023年第3期137-147,共11页Journal of Building Structures
基 金:国家自然科学基金面上项目(51878129);中央高校基本科研业务费专项(HITCE202004);吉林省科技厅重点研发计划(20210203165SF)。
摘 要:为了研究截球形气膜结构的风致响应及风振系数,在B类地貌风场中进行了3种典型矢跨比截球形气膜结构的气弹模型风洞试验,考察内压、风速、有无拉索对膜面位移、应变的影响,分析截球形气膜结构的风致振动规律,提出截球形气膜的等效静力分析方法,给出考虑流固耦合效应的响应风振系数。研究表明:结构总位移极值出现在结构顶部及迎风面中心线约1/3矢高处,最大主应变发生在结构侧面中心线位置;结构平均变形呈顶部隆起、迎风面凹陷、侧面向外凸出的形状;风荷载作用下结构内压减小明显;结构顶部的横风向位移响应标准差、竖向位移响应标准差、顺风向位移响应标准差依次减小;无索结构总位移和最大主应力的风振系数均在1.1~1.4之间;施加拉索后,结构的竖向位移基本为0,顺风向位移及横风向位移极值分别减小为无索结构的50%和30%,总位移风振系数为1.6,最大主应力风振系数仍在1.1~1.4之间,拉索的应力风振系数约为1.6。To study the wind-induced response and wind vibration coefficient of spherical inflatable membrane structures, aero-elastic model wind tunnel tests of three typical rise-span ratio spherical inflatable membrane structures were carried out in a type B geomorphic wind field. The effects of internal pressure, wind speed and cables on the displacement and strain of the structure were investigated. The wind-induced vibration law of the spherical inflatable membrane was discussed. The equivalent static analysis method of the spherical inflatable membrane was proposed, and the response wind vibration coefficients that consider the fluid-structure interaction effect were given. The results show that the extreme value of the total displacements appears at the top of the structure and the position of the center line on the windward side which is about 1/3 height of the structure, and the maximum principal strain occurs at the center line of the side of the structure. The top, windward and side parts of the structure deform upward, downward and outward. The internal pressure decreases significantly under the action of the wind load. The standard deviation of across-wind displacement, vertical displacement and along-wind displacement at the top of the structure decrease in turn. The wind vibration coefficients of the total displacement and maximum principal stress for the cable-less structure are between 1.1 and 1.4. After the application of cables, the vertical displacement of the structure is almost zero, and the maximum displacements of along-wind and across-wind are reduced to 50% and 30% respectively. The wind vibration of the total displacement is 1.6, while the coefficient of maximum principal stress is still between 1.1 and 1.4. The wind vibration coefficient of stress for the cable is about 1.6.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.0.242