本刊英文版Vol.39(2023),No.2论文摘要(英文)  

Abstracts of Acta Mathematica Sinica, English Series, Nos.2, Vol. 39(2023)

在线阅读下载全文

出  处:《数学学报(中文版)》2023年第2期I0004-I0006,共3页Acta Mathematica Sinica:Chinese Series

摘  要:Boundary Lipschitz Regularity of Solutions for Semilinear Elliptic Equations in Divergence Form Jing Qi LIANG Li He WANG Chun Qin ZHOU Abstract In this paper,we consider the pointwise boundary Lipschitz regularity of solutions for the semilinear elliptic equations in divergence form mainly under some weaker assumptions on nonhomogeneous term and the boundary.If the domain satisfies C1,Dinicondition at a boundary point,and the nonhomogeneous term satisfies Dini continuity condition and Lipschitz Newtonian potential condition,then the solution is Lipschitz continuous at this point.Furthermore,we generalize this result to Reifenberg C1,Dinidomains.

关 键 词:satis BOUNDARY NONHOMOGENEOUS 

分 类 号:Z89[文化科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象