Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry  

在线阅读下载全文

作  者:TU Ke-ling YIN Yu-lin YANG Li-ming WANG Jian-hua SUN Qun 

机构地区:[1]Department of Seed Science and Biotechnology,College of Agronomy and Biotechnology,China Agricultural University/The Innovation Center(Beijing)of Crop Seeds Whole-Process Technology Research,Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement,Beijing 100193,P.R.China [2]College of Arts and Science of Hubei Normal University,Huangshi 435109,P.R.China [3]College of Science,China Agricultural University,Beijing 100083,P.R.China

出  处:《Journal of Integrative Agriculture》2023年第3期727-737,共11页农业科学学报(英文版)

基  金:supported by the National Key Research and Development Program of China(2018YFD0100903)。

摘  要:Identifying and selecting high-quality seeds is crucial for improving crop yield.The purpose of this study was to improve the selection of crop seeds based on separating vital seeds from dead seeds,by predicting the potential germination ability of each seed,and thus improving seed quality.The methods of oxygen consumption (Q) of seeds and the headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS) were evaluated for identifying the viability of individual seeds.Firstly,the oxygen consumption technique showed clear differences among the values related to respiratory characteristics for seeds that were either vital or not,and the discrimination ability of final oxygen consumption(Q_(120)) was achieved not only in sweet corn seeds but also in pepper and wheat seeds.Besides,Qtwas established as a new variable to shorten the measuring process in the Q2 (oxygen sensor) procedure,which was significantly related to the viability of individual seeds.To minimize seed damage during measurement,the timing for viability evaluation was pinpointed at the 12,6 and 9 h for pepper,sweet corn,and wheat seeds based on the new variables concerning oxygen consumption (i.e.,Q_(12),Q_(6)and Q_(9),respectively).The accuracies of viability prediction were 91.9,97.7 and 96.2%,respectively.Dead seeds were identified and hence discarded,leading to an enhancement in the quality of the seed lot as indicated by an increase in germination percentage,from 86.6,90.9,and 53.8%to all at 100%.We then used the HS-GC-IMS to determine the viability of individual sweet corn seeds,noting that corn seed has a heavier weight so the volatile gas components are more likely to be detected.A total of 48 chromatographic peaks were identified,among which 38 target compounds were characterized,including alcohols,aldehydes,acids and esters.However,there were no significant differences between the vital and dead seeds,due to the trace amount volatile composition differences among the individual seeds.Furthermore,a PCA based on the signal intensities of th

关 键 词:headspace-gas chromatography-ion mobility spectrometry oxygen consumption seed respiration sweet corn TOMATO wheat 

分 类 号:O657[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象