检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李树青[1] 黄金旺 马丹丹 张志旺 Li Shuqing;Huang Jinwang;Ma Dandan;Zhang Zhiwang(School of Information Engineering,Nanjing University of Finance and Economics,Nanjing 210023)
出 处:《图书情报工作》2023年第3期72-84,共13页Library and Information Service
基 金:国家社会科学基金项目“学术虚拟社区知识交流效率研究”(项目编号:17BTQ028)研究成果之一。
摘 要:[目的/意义]提出一种基于融合显隐式信息的单类协同过滤算法的文献主题词推荐方法,以提高面向学者和文献的主题词推荐的准确率.[方法/过程]通过构造一种基于文献丰富度和主题词流行度的矩阵分解模型,测度出文献和未出现在当前文献中的主题词相关性概率,并根据相关性概率的大小将这些主题词划分为文献的隐式相关主题词和隐式无关主题词.然后针对这两种主题词,分别提出两种不同的主题词权值预测方法,即融合偏好系数的自编码器填充模型和零值填充模型.[结果/结论]在面向人工智能领域的科技文献数据集SD4AI上的实验表明,较各种其他典型协同过滤方法,本文方法可分别提高预测主题词权值和识别高权值主题词的推荐效果,MAE和FCP的提升幅度最高达16.07%和16.83%,P@N和NDCG@N的推荐效果最高达22.37%和27.06%.[Purpose/Significance]The proposed one-class collaborative filtering algorithm with the fusion of explicit and implicit information has a remarkable effect in the field of literature subject term recommendation,and improves the precision of subject term recommendation for scholar and literature.[Method/Process]By constructing a matrix decomposition model based on literature richness and subject term popularity,the correlation probability of literature and subject terms that do not appear in the current literature was measured,and these subject terms could be divided into implicit related subject terms and implicit unrelated subject terms of literature according to the correlation probability.For these two kinds of subject terms,two different weight prediction methods of subject terms were proposed,namely,AutoRec Filling with Preference Coefficient and Zero Filling.[Result/Conclusion]The experiment on SD4AI,a scientific and technological literature dataset oriented to the field of artificial intelligence,shows that compared with various typical collaborative filtering methods,MAE and FCP have respectively improved the recommendation effect of predicting the weight of subject terms and identifying high weight subject terms,with the maximum increase of 16.07%and 16.83%,while the maximum value of P@N and NDCG@N is 22.37%and 27.06%respectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.181.40