检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯小鹏 袁于思 张磊[2] FENG Xiaopeng;YUAN Yusi;ZHANG Lei(First Engineering Co.,Ltd.,China Railway Wuhan Electrification Bureau Group,Wuhan 430074,China;Wuhan University of Science and Technology,Wuhan 430081,China)
机构地区:[1]中铁武汉电气化局集团第一工程有限公司,武汉430074 [2]武汉科技大学,武汉430081
出 处:《有色金属(矿山部分)》2023年第2期35-42,共8页NONFERROUS METALS(Mining Section)
基 金:国家自然科学基金资助项目(51805382);湖北省安全生产专项资金科技项目(KJZX202007003)。
摘 要:由于露天矿山开采环境的复杂性和各异性,传感器采集得到的微震信号包含大量的噪声干扰,为了获得更加准确的微震信号特征,提出了基于自适应同步压缩小波变换(Adaptive Synchrosqueezing Wavelet Transform,AWSST)和广义交叉验证(Generalized Cross-Validation,GCV)的联合降噪方法,从而对微震事件定位和判断开挖过程中岩体状态提供可靠的数据保障。首先在自适应小波变换(Adaptive Wavelet Transform,AWT)的基础上,对每个尺度中的小波系数进行阈值化处理,利用GCV方法自动确定每个成分的最佳阈值水平,达到去除噪声的目的。然后,通过同步压缩变换(Synchrosqueezing Transform,SST)的后处理操作,在时频平面对小波变换系数进行二次重分配,从而提升时频表达的能量聚集性。最后,应用于微震信号的降噪处理,并与现有的时频分析方法进行比较,结果表明提出的联合去噪方法降噪效果更好、时频分析的分辨率更高。Due to the complexity and heterogeneity of the open-pit mining environment,the microseismic signal collected by the sensor contains a lot of noise.To obtain more accurate microseismic signal characteristics,this paper proposes a method based on Adaptive Synchrosqueezing Wavelet Transform(AWSST)and Generalized Cross-validation(GCV)denoising method,to provide a reliable data guarantee for locating microseismic events and judging the state of rock mass during excavation.Firstly,the researched method performs the thresholding of the wavelet coefficients in each scale based on Adaptive Wavelet Transform(AWT)and uses the GCV method to automatically determine the optimal thresholding level of each component.Therefore,the purpose of removing noisy components is achieved.Later,through the post-processing operation of Synchrosqueezing Transform(SST),the wavelet transform coefficients are redistributed twice in the time-frequency plane,thereby improving the energy concentration of time-frequency representations.Finally,this method is applied to denoising of microseismic signals and compared with the existing time-frequency analysis methods.The result demonstrated that the joint denoising method proposed in this paper has better denoising performance and higher resolution of the time-frequency plane.
关 键 词:露天矿山 微震信号 噪声 自适应小波变换 同步压缩变换 最佳阈值 广义交叉验证 降噪方法
分 类 号:TD78[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.132.79