检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董蝴蝶 王林 陈港 倪晋波 DONG Hu-die;WANG Lin;CHEN Gang;NI Jin-bo(School of Mathematics and Big Data,Anhui University of Science and Technology,Anhui Huainan 232001,China)
机构地区:[1]安徽理工大学数学与大数据学院,安徽淮南232001
出 处:《淮阴师范学院学报(自然科学版)》2023年第1期1-8,共8页Journal of Huaiyin Teachers College;Natural Science Edition
基 金:国家自然科学基金项目(11601007);安徽高校自然科学研究项目(KJ2019A0108,KJ2020A0291)。
摘 要:基于Hilfer-Katugampola分数阶微积分框架下,讨论了一类序列分数阶微分方程多点混合边值问题Lyapunov型不等式.通过将微分方程边值问题等价转化为积分方程问题,再结合先验估计方法得到了Lyapunov型不等式.Based on the framework of Hilfer-Katugampola fractional calculus,this paper discusses a class of Lyapunov-type inequalities for multi-point mixed boundary value problems of sequential fractional differential equations.By transforming the boundary value problem of differential equation into the problem of integral equation,and combining the prior estimation method the Lyapunov-type inequality was obtained.It was noted that Hilfer-Katugampola fractional differential was a kind of generalized fractional differential obtained by many classical fractional differential interpolation.Under this characteristic,a series of corollaries are given at the end of this paper,which shows that the obtained results generalize and enrich the related work in the existing literature.
关 键 词:Lyapunov型不等式 Hilfer-Katugampola分数阶微分 序列分数阶微分方程 多点混合边值问题
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170