基于多元线性回归模型的公路用地预测——以宣城市为例  

Prediction of Highway Land Use Based on Multiple Linear Regression Model--Taking XuanCheng City for Example

在线阅读下载全文

作  者:潘世东 张卉 Pan Shidong;Zhang Hui(Anhui Provincial Transportation Planning and Design and Research Institute Co.,Ltd.,Anhui Hefei 230088,China;Jiangsu Province Land and Resources Information Center,Nanjing,Jiangsu 241000,China)

机构地区:[1]安徽省交通规划设计研究总院股份有限公司,安徽合肥230088 [2]江苏省国土资源信息中心,江苏南京241000

出  处:《绿色科技》2023年第4期235-239,271,共6页Journal of Green Science and Technology

摘  要:准确地预测公路用地需求量,可以更合理地安排市级交通基础设施项目特别是公路用地项目,提高规划的科学性。以宣城市为例,通过多元线性回归模型,分析了2020、2025及2030年公路用地的需求量,结果表明:①模型预测用地数据远小于规划用地数据;②其原因包括3个方面即规划设计层面、地方政府层面以及模型本身。公路建设是适应经济发展的必然所需,但若建设过度则造成资金和资源浪费以及养护成本的增加,同时也不利于土地的集约节约利用和生态环境保护。因此,建议在规划层面应以集约节约用地和保护生态环境为出发点,对交通基础设施特别是公路项目进行合理布局。Accurately forecast the demand for highway land,can be used to arrange municipal transportation infrastructure projects more reasonably,especially highway land projects and improve the scientific planning.Taking Xuancheng City as an example,this paper intends to analyze the demand of highway land in 2020,2025 and 2030 through multiple linear regression model.The results show that:①the predicted land use data of the model is far less than that of the planned land use data;②The reasons include three aspects:the level of planning and design,the level of local government and the model itself.Highway construction is necessary to adapt to the economic development,but if the construction is excessive,it will cause the waste of funds and resources as well as the increase of maintenance cost,and it is not conducive to the intensive and economical use of land and ecological environment protection.Therefore,it is suggested that at the planning level,the transportation infrastructure,especially the highway project,should be reasonably arranged based on the intensive and economical use of land and the protection of the ecological environment.

关 键 词:多元线性回归 公路用地 预测 

分 类 号:F542[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象