检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴久竣 马肄恒 吴坚 班兆军[1] Dai Jiujun
机构地区:[1]浙江科技学院生物与化学工程学院,浙江杭州310023 [2]浙江科技学院机械与能源工程学院,浙江杭州310023
出 处:《江苏农业科学》2023年第5期208-215,共8页Jiangsu Agricultural Sciences
基 金:“十三五”国家重点研发计划(编号:2017YFD0401304);浙江省重点研发计划(编号:2022C04039)。
摘 要:葡萄病害是导致葡萄严重减产的主要因素,大多数病害症状都反映在葡萄的叶片上,但是人工针对叶片的识别费时且效率低。本研究提出了一种基于改进残差网络的葡萄叶片病害识别模型。该研究在ResNet50的基础上采用金字塔卷积网络,通过其包含不同大小和不同深度的卷积核来处理输入,然后以特征融合来获得不同程度的病害特征细节。在金字塔网络结构上采用深度超参数化卷积层代替传统的卷积层,能够加快模型收敛速度,有效提升模型精度。结果表明,改进后的残差网络模型与AlexNet、MobileNetV2、ResNet50/101、VGG16模型相比,在准确性方面具有显著优势。与原模型相比较,识别准确率提高3.18百分比,改进模型对病害识别准确率高达98.20%。可以为识别葡萄叶片病害提供参考。
关 键 词:葡萄病害 残差网络 金字塔卷积 深度超参数化卷积层
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3