检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙琪 李陶 靳志祥 梁登峰 Qi Sun;Tao Li;Zhi-Xiang Jin;Deng-Feng Liang(School of Mathematics and Statistics,Beijing Technology and Business University,Beijing 100048,China;School of Computer Science and Techonology,Dongguan University of Technology,Dongguan 523808,China)
机构地区:[1]School of Mathematics and Statistics,Beijing Technology and Business University,Beijing 100048,China [2]School of Computer Science and Techonology,Dongguan University of Technology,Dongguan 523808,China
出 处:《Chinese Physics B》2023年第3期96-101,共6页中国物理B(英文版)
基 金:the National Natural Science Foundation of China(Grant Nos.12175147,11847209,and 11675113);the Natural Science Foundation of Beijing(Grant No.KZ201810028042);Beijing Natural Science Foundation(Grant No.Z190005).
摘 要:Monogamy and polygamy relations characterize the distributions of entanglement in multipartite systems.We provide a characterization of multiqubit entanglement constraints in terms of unified-(q,s)entropy.A class of tighter monogamy inequalities of multiqubit entanglement based on theα-th power of unified-(q,s)entanglement forα≥1 and a class of polygamy inequalities in terms of theβ-th power of unified-(q,s)entanglement of assistance are established in this paper.Our results present a general class of the monogamy and polygamy relations for bipartite entanglement measures based on unified-(q,s)entropy,which are tighter than the existing ones.What is more,some usual monogamy and polygamy relations,such as monogamy and polygamy relations based on entanglement of formation,Renyi-q entanglement of assistance and Tsallis-q entanglement of assistance,can be obtained from these results by choosing appropriate parameters(q,s)in unified-(q,s)entropy entanglement.Typical examples are also presented for illustration.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147