Electrical manipulation of a hole‘spin'–orbit qubit in nanowire quantum dot:The nontrivial magnetic field effects  

在线阅读下载全文

作  者:李睿 张航 Rui Li;Hang Zhang(Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China)

机构地区:[1]Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

出  处:《Chinese Physics B》2023年第3期125-130,共6页中国物理B(英文版)

基  金:the National Natural Science Foundation of China(Grant No.11404020);the Project from the Department of Education of Hebei Province(Grant No.QN2019057);the Starting up Foundation from Yanshan University(Grant No.BL18043).

摘  要:Strong‘spin’–orbit coupled one-dimensional hole gas is achievable in a Ge nanowire in the presence of a strong magnetic field.The strong magnetic field lifts the two-fold degeneracy in the hole subband dispersions,so that the effective low-energy subband dispersion exhibits strong spin–orbit coupling.Here,we study the electrical spin manipulation in a Ge nanowire quantum dot for both the lowest and second lowest hole subband dispersions.Using a finite square well to model the quantum dot confining potential,we calculate exactly the level splitting of the spin–orbit qubit and the Rabi frequency in the electric-dipole spin resonance.The spin–orbit coupling modulated longitudinal g-factor gso is not only non-vanishing but also magnetic field dependent.Moreover,the spin–orbit couplings of the lowest and second lowest subband dispersions have opposite magnetic dependences,so that the results for these two subband dispersions are totally different.It should be noticed that we focus only on the properties of the hole‘spin’instead of the real hole spin.

关 键 词:quantum dot hole spin spin–orbit coupling electric-dipole spin resonance 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象