检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]University of Chinese Academy of Sciences,Beijing 100049,China
出 处:《Journal of Systems Science & Complexity》2023年第1期3-28,共26页系统科学与复杂性学报(英文版)
基 金:partially supported by NKRDP under Grant No.2018YFA0704705;the National Natural Science Foundation of China under Grant No.12288201.
摘 要:In this paper,the L_(2,∞)normalization of the weight matrices is used to enhance the robustness and accuracy of the deep neural network(DNN)with Relu as activation functions.It is shown that the L_(2,∞)normalization leads to large dihedral angles between two adjacent faces of the DNN function graph and hence smoother DNN functions,which reduces over-fitting of the DNN.A global measure is proposed for the robustness of a classification DNN,which is the average radius of the maximal robust spheres with the training samples as centers.A lower bound for the robustness measure in terms of the L_(2,∞)norm is given.Finally,an upper bound for the Rademacher complexity of DNNs with L_(2,∞)normalization is given.An algorithm is given to train DNNs with the L_(2,∞)normalization and numerical experimental results are used to show that the L_(2,∞)normalization is effective in terms of improving the robustness and accuracy.
关 键 词:Deep neural network global robustness measure L_(2 ∞)normalization OVER-FITTING Rademacher complexity smooth DNN
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249