Event-Triggered Optimal Nonlinear Systems Control Based on State Observer and Neural Network  被引量:2

在线阅读下载全文

作  者:CHENG Songsong LI Haoyun GUO Yuchao PAN Tianhong FAN Yuan 

机构地区:[1]Anhui Engineering Laboratory of Human-Robot Integration System and Intelligent Equipment,School of Electrical Engineering and Automation,Anhui University,Hefei 230601,China [2]Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education,School of Electrical Engineering and Automation,Anhui University,Hefei 230601,China

出  处:《Journal of Systems Science & Complexity》2023年第1期222-238,共17页系统科学与复杂性学报(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant Nos.61973002,62103003;the Anhui Provincial Natural Science Foundation under Grant No.2008085J32;the National Postdoctoral Program for Innovative Talents under Grant No.BX20180346;the General Financial Grant from the China Postdoctoral Science Foundation under Grant No.2019M660834;the Excellent Young Talents Program in Universities of Anhui Province under Grant No.gxyq2019002.

摘  要:This paper develops a novel event-triggered optimal control approach based on state observer and neural network(NN)for nonlinear continuous-time systems.Firstly,the authors propose an online algorithm with critic and actor NNs to solve the optimal control problem and provide an event-triggered method to reduce communication and computation burdens.Moreover,the authors design weight estimation for critic and actor NNs based on gradient descent method and achieve uniformly ultimate boundednesss(UUB)estimation results.Furthermore,by using bounded NN weight estimation and dead-zone operator,the authors propose a triggering condition,prove the asymptotic stability of closed-loop system from Lyapunov stability perspective,and exclude the Zeno behavior.Finally,the authors provide a numerical example to illustrate the effectiveness of the proposed method.

关 键 词:Event-triggered control neural network optimal control state observer 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象