检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牛智有[1,2] 于重洋 吴志陶 邵艳凯 刘梅英 NIU Zhiyou;YU Chongyang;WU Zhitao;SHAO Yankai;LIU Meiying(College of Engineering,Huazhong Agricultural University,Wuhan 430070,China;Key Laboratory of Intelligent Breeding Technology,Ministry of Agriculture and Rural Affairs,Wuhan 430070,China)
机构地区:[1]华中农业大学工学院,武汉430070 [2]农业农村部智慧养殖技术重点实验室,武汉430070
出 处:《农业机械学报》2023年第2期378-385,402,共9页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金项目(32072765);国家重点研发计划项目(2021YFD1300305)。
摘 要:为了解决饲料生产过程中入仓原料种类采用人工取样感官识别所存在的问题,实现原料种类自动识别,以玉米、麸皮、小麦、豆粕、鱼粉等大宗饲料原料为研究对象,自主设计搭建了多通道入仓原料种类自动识别装置,采集饲料原料图像数据集,并使用数据增强的方法增加样本多样性。基于ResNet18网络模型加入通道注意力机制、增加Dropout函数,并嵌入余弦退火法的Adam优化器,引入迁移学习机制训练模型,构建适用于饲料原料种类识别的CAM-ResNet18网络模型。CAM-ResNet18网络模型的原料种类验证准确率达99.1%,识别时间为2.58 ms。与ResNet18、ResNet34、AlexNet、VGG16等网络模型相比,模型验证集准确率分别提升0.6、0.2、3.7、1.1个百分点。针对混淆矩阵结果分析,测试集识别平均准确率达99.4%,具有较高的精确度和召回率。结果表明,构建的CAM-ResNet18网络模型在饲料原料种类识别方面具有较高的识别精度和较快检测速度,自主研发的多通道入仓原料种类自动识别装置具有实际应用价值。With the aim to solve the problem of manual sampling and sensory identification of feed raw material entering the silo in the feed production process,and realize automatic identification of raw material type,taking bulk feed raw material such as corn,bran,wheat,soybean meal and fish meal as the research object,a multi-channel automatic identification device for feed raw material type was designed and built independently,feed raw material image dataset was collected,and data augmentation methods were used to increase sample diversity.Based on ResNet18 convolution neural network,CAM-ResNet18 network model for feed raw material type identification was constructed by adding the channel attention mechanism,adding the Dropout method,adopting the Adam optimizer and embedding the cosine annealing method,while the migration learning was introduced to train the model.The average accuracy of the CAM-ResNet18 network model for feed raw material type reached 99.1% in the validation set,with a recognition time of 2.58 ms.Compared with the ResNet18,ResNet34,AlexNet and VGG16 network models,the validation accuracy was improved by 0.6,0.2,3.7 and 1.1 percentage points,respectively.For the result analysis of confusion matrix,the average accuracy of test set recognition was 99.4%,which had high accuracy and recall.The results showed that CAM-ResNet18 network model had higher accuracy rate and faster detection speed in the identification of feed raw material,providing a theoretical method and technical support for the identification of feed raw material entering the silo in the actual production.
关 键 词:饲料原料 种类识别 改进ResNet18 注意力机制
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222