基于Φ-OTDR+BP神经网络分类器的海缆防锚害系统模式识别  被引量:1

Pattern recognition of submarine cable anti-anchor damage system based on Φ-OTDR+BP neural network classifier

在线阅读下载全文

作  者:梅春 MEI Chun(State Power Investment Group Jiangsu Offshore Wind Power Co.,Ltd.,Yancheng Jiangsu 224000,China)

机构地区:[1]国家电投集团江苏海上风力发电有限公司,江苏盐城224000

出  处:《光通信技术》2023年第2期39-43,共5页Optical Communication Technology

摘  要:基于相位敏感光时域反射计(Φ-OTDR)的分布式光纤振动探测是海缆锚害预警的重要防护手段。针对探测海缆锚害的入侵事件类型判别需求,提出将反向传播(BP)神经网络分类器应用于基于Φ-OTDR的海缆防锚害系统中,介绍了基于Φ-OTDR+BP神经网络分类器的海缆防锚害系统原理,采用信号时域特征和时频域特征作为特征向量,构建基于BP神经网络的分类器,实现了对入侵事件类型的判别。试验结果表明,分类器的模式识别准确率达到100%。Distributed optical fiber vibration detection based on phase sensitive optical time domain reflectometer(OTDR) is an important protection method for early warning of submarine cable anchor damage. Aiming at the requirements of distinguish intrusion event types for detecting anchor damage of submarine cable, the backpropagation(BP) neural network classifier is applied to the submarine cable anchor damage prevention system based on Φ-OTDR. The principle of the submarine cable anchor damage prevention system based on Φ-OTDR+BP neural network classifier is introduced. The characteristics of signal in time domain and time frequency domain are used as feature vectors. A classifier based on BP neural network is constructed to recognize the types of intrusion events. The experimental results show that the pattern recognition accuracy of the classifier reaches 100%.

关 键 词:海底电缆防锚害 神经网络算法 模式判别 相位敏感光时域反射计 入侵判别 

分 类 号:TN929.1[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象