检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈日超 韦荣菊 陈华 蔡彬[2] 杨钦兰 李春春 荣琴 CHEN Richao;WEI Rongju;CHEN Hua;CAI Bin;YANG Qinlan;LI Chunchun;RONG Qin(General Medical Department,the Second Affiliated Hospital of Guilin Medical College,Guilin,Guangxi 541199,China;Cardiovascular Disease Area I,the Affiliated Hospital of Guilin Medical College,Guilin,Guangxi 541100,China)
机构地区:[1]桂林医学院第二附属医院全科医疗科,广西桂林541199 [2]桂林医学院附属医院心血管一病区,广西桂林541100
出 处:《中国医学工程》2023年第3期19-25,共7页China Medical Engineering
基 金:广西壮族自治区卫生健康委员会自筹经费科研课题(Z20211648)。
摘 要:目的构建急性心肌梗死(AMI)早期恶性室性心律失常(MVA)风险预测模型,为AMI患者早期MVA预测提供参考。方法收集2018年10月至2021年10月桂林医学院两家附属医院AMI患者资料,其中早期发生MVA者44例(MVA组),未发生MVA患者154例(非MVA组)。收集一般基线资料、生化及检查结果,采用单因素分析和logistic回归分析筛选AMI患者早期MVA独立风险因素,构建风险预测模型。采用受试者工作特征(ROC)曲线下面积验证预测模型的区分度,校正曲线及决策曲线评价及验证预测模型的一致性及临床获益,通过Bootstrap自抽样法(B=1000)行内部验证。结果通过单因素分析和Logistic回归分析筛选出饮酒史、BMI、Killip分级、CKMB、尿酸为AMI患者早期MVA的独立危险因素(P<0.05)。以此构建AMI患者早期MVA的风险预测模型,并采用ROC曲线对模型鉴别效能进行评价,显示AUC是0.893(95%CI:0.827~0.943)。校正曲线及决策曲线显示本预测模型具有良好的一致性和临床适用性。采用Bootstrap法(B=1000)进行内部验证显示C指数为0.872,表明本模型具有良好的区分度。结论本研究通过纳入饮酒史、BMI、Killip分级、CKMB、尿酸5个危险因素构建的AMI患者早期发生MVA风险预测模型,显示出较好的区分度、一致性及临床适用性,对AMI早期MVA有良好的预测价值。【Objective】To establish a risk prediction model of malignant ventricular arrhythmia(MVA)in early stage of acute myocardial infarction(AMI),and to provide reference for early MVA prediction of AMI patients.【Methods】The data of AMI patients in two affiliated hospitals of Guilin Medical College from October 2018 to October 2021 were collected,including 44 patients with early MVA(MVA group)and 154 patients without MVA(non-MVA group).General baseline data,biochemical and examination results were collected,independent risk factors of early MVA in patients with AMI were screened by single factor analysis and logistic regression analysis,and a risk prediction model was constructed.The area under the ROC curve was used to verify the differentiation of the prediction model,the correction curve and decision curve were used to evaluate and verify the consistency and clinical benefits of the prediction model,and the bootstrap self sampling method(b=1000)was used for internal verification.【Results】Drinking history,BMI,Killip grade,CKMB and uric acid were selected as independent risk factors for early MVA in patients with AMI by univariate analysis and logistic regression analysis(P<0.05).Based on this,the risk prediction model of early MVA in patients with AMI was constructed,and the identification efficiency of the model was evaluated by ROC curve,which showed that the AUC was 0.893(95%CI:0.827–0.943).The calibration curve and decision curve show that the prediction model has good consistency and clinical applicability.The bootstrap method(b=1000)is used for internal verification,and the C index is 0.872,indicating that the model has good discrimination.【Conclusion】The risk prediction model of early MVA in patients with AMI constructed by incorporating five risk factors:drinking history,BMI,Killip grade,CKMB and uric acid shows good differentiation,consistency and clinical applicability,and has good predictive value for early MVA in AMI.
关 键 词:急性心肌梗死 恶性室性心律失常 风险预测模型 列线图
分 类 号:R542.22[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249