检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kirk W.Cameron
机构地区:[1]Computer Science,Virginia Tech,Washington D.C.,VA 24061,U.S.A.
出 处:《Journal of Computer Science & Technology》2023年第1期80-86,共7页计算机科学技术学报(英文版)
摘 要:Amdahl’s Law painted a bleak picture for large-scale computing.The implication was that parallelism was limited and therefore so was potential speedup.While Amdahl’s contribution was seminal and important,it drove others vested in parallel processing to define more clearly why large-scale systems are critical to our future and how they fundamentally provide opportunities for speedup beyond Amdahl’s predictions.In the early 2000s,much like Amdahl,we predicted dire consequences for large-scale systems due to power limits.While our early work was often dismissed,the implications were clear to some:power would ultimately limit performance.In this retrospective,we discuss how power-performance measurement and modeling at scale led to contributions that have driven server and supercomputer design for more than a decade.While the influence of these techniques is now indisputable,we discuss their connections,limits and additional research directions necessary to continue the performance gains our industry is accustomed to.
关 键 词:Amdahl’s Law SPEEDUP power-aware computing power modeling performance modeling performance prediction power measurement
分 类 号:TP368.5[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.135.246