Boosting Whale Optimizer with Quasi-Oppositional Learning and Gaussian Barebone for Feature Selection and COVID-19 Image Segmentation  被引量:4

在线阅读下载全文

作  者:Jie Xing Hanli Zhao Huiling Chen Ruoxi Deng Lei Xiao 

机构地区:[1]Key Laboratory of Intelligent Informatics for Safety&Emergency of Zhejiang Province,Wenzhou University,Wenzhou,325035,China

出  处:《Journal of Bionic Engineering》2023年第2期797-818,共22页仿生工程学报(英文版)

基  金:the Zhejiang Provincial Natural Science Foundation of China(no.LZ21F020001);the Basic Scientific Research Program of Wenzhou(no.S20220018).

摘  要:Whale optimization algorithm(WOA)tends to fall into the local optimum and fails to converge quickly in solving complex problems.To address the shortcomings,an improved WOA(QGBWOA)is proposed in this work.First,quasi-opposition-based learning is introduced to enhance the ability of WOA to search for optimal solutions.Second,a Gaussian barebone mechanism is embedded to promote diversity and expand the scope of the solution space in WOA.To verify the advantages of QGBWOA,comparison experiments between QGBWOA and its comparison peers were carried out on CEC 2014 with dimensions 10,30,50,and 100 and on CEC 2020 test with dimension 30.Furthermore,the performance results were tested using Wilcoxon signed-rank(WS),Friedman test,and post hoc statistical tests for statistical analysis.Convergence accuracy and speed are remarkably improved,as shown by experimental results.Finally,feature selection and multi-threshold image segmentation applications are demonstrated to validate the ability of QGBWOA to solve complex real-world problems.QGBWOA proves its superiority over compared algorithms in feature selection and multi-threshold image segmentation by performing several evaluation metrics.

关 键 词:Whale optimization algorithm Quasi-opposition-based learning Gaussian barebone Image segmentation Feature selection Bionic algorithm 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象