检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kun Ren Zheng Jiao Xiaolong Wu Honggui Han
机构地区:[1]Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China [2]Engineering Research Center of Digital Community,Ministry of Education,Beijing 100124,China [3]Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China
出 处:《Chinese Journal of Chemical Engineering》2023年第1期37-45,共9页中国化学工程学报(英文版)
基 金:supports by National Key Research and Development Project(2018YFC1900800-5);National Natural Science Foundation of China(61890930-5,62021003,61903010 and 62103012);Beijing Outstanding Young Scientist Program(BJJWZYJH01201910005020);Beijing Natural Science Foundation(KZ202110005009 and 4214068).
摘 要:The membrane fouling phenomenon,reflected with various fouling characterization in the membrane bioreactor(MBR)process,is so complicated to distinguish.This paper proposes a multivariable identification model(MIM)based on a compacted cascade neural network to identify membrane fouling accurately.Firstly,a multivariable model is proposed to calculate multiple indicators of membrane fouling using a cascade neural network,which could avoid the interference of the overlap inputs.Secondly,an unsupervised pretraining algorithm was developed with periodic information of membrane fouling to obtain the compact structure of MIM.Thirdly,a hierarchical learning algorithm was proposed to update the parameters of MIM for improving the identification accuracy online.Finally,the proposed model was tested in real plants to evaluate its efficiency and effectiveness.Experimental results have verified the benefits of the proposed method.
关 键 词:Membrane fouling PERMEABILITY Cascade neural networks Model PREDICTION
分 类 号:TQ051.893[化学工程] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222