检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康烨 李金阳 邱金凯 张伟[1] 许秀英 Kang Ye;Li Jinyang;Qiu Jinkai;Zhang Wei;Xu Xiuying(College of Engineering,Heilongjiang Bayi Agricultural University,Daqing 163319,China)
机构地区:[1]黑龙江八一农垦大学工程学院,黑龙江大庆163319
出 处:《农机化研究》2023年第9期7-13,共7页Journal of Agricultural Mechanization Research
基 金:国家现代农业产业技术体系项目(CARS-04-PS32);黑龙江八一农垦大学校内培育课题(XZR2017-10);黑龙江省大学生创新创业训练计划项目(202010223007)。
摘 要:为提高田间大规模高通量情况下大豆幼苗真叶期(V1)、复叶期(V2)形态的识别率,从而为判断出苗率、苗期整齐度及茎叶喷雾除草最佳时期确定提供依据,提出了一种基于超低空无人机可见光图像的大豆幼苗识别方法。该方法以四旋翼无人机采集到的RGB图像为基础,将其转换至HSV颜色空间从而提取出图像中的大豆幼苗植株,并利用K-means方法找到最佳分割阈值,其真叶期阈值点坐标为(83,183,201)、(31,25,74),复叶期阈值点坐标为(79,215,225)、(29,72,61)。基于提取出的大豆幼苗图像训练深度学习网络,得到大豆幼苗识别模型。测试结果表明:模型可有效识别真叶期与复叶期两个幼苗关键时期的大豆幼苗,真叶期幼苗识别准确率达到92.68%,复叶期幼苗识别准确率达到90.09%,可有效完成田间大豆幼苗苗期判断任务,及时指导大豆种植管理决策。In order to improve the identification rate of soybean seedling morphology at true leaf stage(V1)and compound leaf stage(V2)under large-scale and high-throughput conditions,and to lay a foundation for judging seedling emergence rate and uniformity of seedling stage,a soybean seedling identification method based on ultra-low altitude UAV-based imagery was proposed.The method was based on the RGB image of the quadrotor UAV acquired,which was converted into HSV color space to extract the soybean seedling in the image,and used K-means find the best threshold,V1 point coordinates of(83,183,201),(31,25,74),and V2 point coordinates of(79,215,225),(29,72,61).The soybean seedling recognition model was obtained based on the extracted soybean seedling image training deep learning network.Tests results showed that the model could effectively identify soybean seedlings in the two key stages of V1 stage and V2 stage,and the identification accuracy reached 92.68%and 90.09%.The results showed that the soybean seedling stage judgment task based on ultra-low altitude UAV image could be effectively completed in the field and timely guide the soybean planting management decision.
分 类 号:S252[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7