检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王秀珍[1] Wang Xiuzhen(Zhengzhou University of Science and Technology,Zhengzhou 450064,China)
机构地区:[1]郑州科技学院,郑州450064
出 处:《农机化研究》2023年第10期207-210,共4页Journal of Agricultural Mechanization Research
基 金:河南省科技厅软科学项目(182400410595)。
摘 要:杂草图像识别是植保机作业过程中的关键环节,而利用光谱特性分析技术可以快速对种植区域的杂草进行识别。为此,利用ASD光谱分析仪连续进行5组光谱数据采集,经分析处理后得出光谱数据;按照最小值原则选取595、710、755、950nm共4个特征波长,建立典型判别函数模型和贝叶斯判别函数模型,对预测集合数据进行预测。结果表明:贝叶斯判别函数模型能够较好地进行种植区域杂草图像识别,且模型具有较高的稳定性,为植保机杂草图像识别探测传感器的开发提供了参考依据。Weed image recognition is the key link in the operation process of plant protection machine.The weeds in the planting area can be recognized quickly by using spectral characteristic analysis technology.In this paper,five groups of spectral data are collected continuously by ASD spectral analyzer.After analysis and processing,the spectral data are obtained.According to the minimum principle,four characteristic wavelengths of 595nm,710nm,755nm and 950nm are selected to establish typical discriminant function model and Bayesian discriminant function model to predict the prediction set data.The results show that the Bayesian discriminant function model can better recognize the weed image in the planting area,and the model has high stability,which provides a reference basis for the development of weed image recognition and detection sensor of plant protection machine.
分 类 号:S224.3[农业科学—农业机械化工程] TP391.41[农业科学—农业工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49