检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:项新建[1] 姚佳娜 黄炳强[1] 杨松 武晓莉[1] Xiang Xinjian;Yao Jiana;Huang Bingqiang;Yang Song;Wu Xiaoli(School of Automation and Electrical Engineering,Zhejiang University of Science and Technology,Hangzhou 310023;Intelligent Transportation Research Institute,Zhejiang Scientific Research Institute of Transport,Hangzhou 310009)
机构地区:[1]浙江科技学院自动化与电气工程学院,杭州310023 [2]浙江省交通运输科学研究院智能交通研究所,杭州310009
出 处:《计算机辅助设计与图形学学报》2023年第2期293-302,共10页Journal of Computer-Aided Design & Computer Graphics
基 金:浙江省公益技术研究计划项目(LGG19F030005).
摘 要:针对不同光照下交通标志图像检测与识别困难的问题,提出一种基于Retinex-Gamma的光照图像增强算法,该算法与Mask R-CNN相结合,称为Retinex-Gamma-Mask R-CNN算法.首先,基于光照反射成像模型将图像RGB空间转换为HSV空间,对V通道进行多尺度高斯滤波处理获得光照分量,利用光照分量提取反射分量,并对反射分量进行线性拉升优化;其次,利用光照分量的分布特征进行二维Gamma函数调整,并获得优化后的亮度分量;最后,利用混合空间增强法获得增强后的V通道,重新构造图像.实验采用的ZCTSDB数据集共有15724幅图像,包含不同光照的驾驶环境.实验结果表明,与标准Mask R-CNN相比,Retinex-Gamma-Mask R-CNN算法对交通标志的目标检测的均值平均精度提升了0.161%,对交通标志的实例分割的均值平均精度提升了0.363%.In order to deal with the difficulty of traffic sign image detection and recognition under different illumination condition,an illumination image enhancement algorithm based on Retinex-Gamma is proposed.The algorithm is combined with Mask R-CNN,which is called Retinex-Gamma Mask R-CNN algorithm.Firstly,based on the illumination reflection imaging model,the image RGB space is transformed into HSV space,the V channel is processed by multi-scale Gaussian filtering to obtain the illumination component,the illumination component is used to extract the reflection component,and the reflection component is linearly optimized.Secondly,the two-dimensional Gamma function is adjusted by using the distribution characteris-tics of illumination components,and the optimized brightness components are obtained.Finally,the en-hanced V channel is obtained by using the mixed space enhancement method to reconstruct the image.The ZCTSDB dataset used for the experiment has a total of 15724 images and contains driving environments with different lighting.The experimental results show that compared with the standard Mask R-CNN,the average accuracy of Retinex-Gamma-Mask R-CNN algorithm for target detection of traffic signs is im-proved by 0.161%,and the average accuracy of instance segmentation of traffic signs is improved by 0.363%.
关 键 词:智能交通 交通标志识别 Mask R-CNN 交通标志 低光照 光照图像增强
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.71.244