检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Abdullah Ahmed Al-Dulaimi Muhammet Tahir Guneser Alaa Ali Hameed Mohammad Shukri Salman
机构地区:[1]Department of Electrical and Electronics Engineering,Karabuk University,Karabuk,78100,Turkey [2]Department of Computer Engineering,Istinye University,Istanbul,34303,Turkey [3]College of Engineering and Technology,American University of the Middle East,Egaila,54200,Kuwait
出 处:《Computer Modeling in Engineering & Sciences》2023年第9期2291-2319,共29页工程与科学中的计算机建模(英文)
摘 要:Recently,the demand for renewable energy has increased due to its environmental and economic needs.Solar panels are the mainstay for dealing with solar energy and converting it into another form of usable energy.Solar panels work under suitable climatic conditions that allow the light photons to access the solar cells,as any blocking of sunlight on these cells causes a halt in the panels work and restricts the carry of these photons.Thus,the panels are unable to work under these conditions.A layer of snow forms on the solar panels due to snowfall in areas with low temperatures.Therefore,it causes an insulating layer on solar panels and the inability to produce electrical energy.The detection of snow-covered solar panels is crucial,as it allows us the opportunity to remove snow using some heating techniques more efficiently and restore the photovoltaics system to proper operation.This paper presents five deep learning models,■-16,■-19,ESNET-18,ESNET-50,and ESNET-101,which are used for the recognition and classification of solar panel images.In this paper,two different cases were applied;the first case is performed on the original dataset without trying any kind of preprocessing,and the second case is extreme climate conditions and simulated by generating motion noise.Furthermore,the dataset was replicated using the upsampling technique in order to handle the unbalancing issue.The conducted dataset is divided into three different categories,namely;all_snow,no_snow,and partial snow.The fivemodels are trained,validated,and tested on this dataset under the same conditions 60%training,20%validation,and testing 20%for both cases.The accuracy of the models has been compared and verified to distinguish and classify the processed dataset.The accuracy results in the first case showthat the comparedmodels■-16,■-19,ESNET-18,and ESNET-50 give 0.9592,while ESNET-101 gives 0.9694.In the second case,the models outperformed their counterparts in the first case by evaluating performance,where the accuracy results reached 1.
关 键 词:Deep learning CNN models image classification solar panels solar panel defect detection
分 类 号:TM914.4[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.48