检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:David A.Wood
机构地区:[1]DWA Energy Limited,Lincoln,LN59JP,United Kingdom
出 处:《Research in Ecology》2022年第4期13-38,共26页生态学研究(英文)
摘 要:A methodology integrating correlation,regression(MLR),machine learning(ML),and pattern analysis of long-term weekly net ecosystem exchange(NEE)datasets are applied to four deciduous broadleaf forest(DBF)sites forming part of the AmeriFlux(FLUXNET2015)database.Such analysis effectively characterizes and distinguishes those DBF sites for which long-term NEE patterns can be accurately predicted using the recorded environmental variables,from those sites cannot be so delineated.Comparisons of twelve NEE prediction models(5 MLR;7 ML),using multi-fold cross-validation analysis,reveal that support vector regression generates the most accurate and reliable predictions for each site considered,based on fits involving between 16 and 24 available environmental variables.SVR can accurately predict NEE for datasets for DBF sites US-MMS and US-MOz,but fail to reliably do so for sites CA-Cbo and MX-Tes.For the latter two sites the predicted versus recorded NEE weekly data follow a Y≠X pattern and are characterized by rapid fluctuations between low and high NEE values across leaf-on seasonal periods.Variable influences on NEE,determined by their importance to MLR and ML model solutions,identify distinctive sets of the most and least influential variables for each site studied.Such information is valuable for monitoring and modelling the likely impacts of changing climate on the ability of these sites to serve as long-term carbon sinks.The periodically oscillating NEE weekly patterns distinguished for sites CA-Cbo and MX-Tes are not readily explained in terms of the currently recorded environmental variables.More detailed analysis of the biological processes at work in the forest understory and soil at these sites are recommended to determine additional suitable variables to measure that might better explain such fluctuations.
关 键 词:EDDY-COVARIANCE CO_(2)-flux influences Multi-fold cross validation Weekly NEE pattern analysis Site specific NEE influences FLUXNET2015 protocols
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117