检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ragd Alhejaily Rahaf Alhejaily Mai Almdahrsh Shareefah Alessa Saleh Albelwi
机构地区:[1]Faculty of Computing and Information Technology,University of Tabuk,Tabuk,47321,Saudi Arabia [2]Industrial Innovation&Robotics Center(IIRC),University of Tabuk,Saudi Arabia
出 处:《Intelligent Automation & Soft Computing》2023年第6期2669-2684,共16页智能自动化与软计算(英文)
摘 要:Football is one of the most-watched sports,but analyzing players’per-formance is currently difficult and labor intensive.Performance analysis is done manually,which means that someone must watch video recordings and then log each player’s performance.This includes the number of passes and shots taken by each player,the location of the action,and whether or not the play had a successful outcome.Due to the time-consuming nature of manual analyses,interest in automatic analysis tools is high despite the many interdependent phases involved,such as pitch segmentation,player and ball detection,assigning players to their teams,identifying individual players,activity recognition,etc.This paper proposes a system for developing an automatic video analysis tool for sports.The proposed system is the first to integrate multiple phases,such as segmenting the field,detecting the players and the ball,assigning players to their teams,and iden-tifying players’jersey numbers.In team assignment,this research employed unsu-pervised learning based on convolutional autoencoders(CAEs)to learn discriminative latent representations and minimize the latent embedding distance between the players on the same team while simultaneously maximizing the dis-tance between those on opposing teams.This paper also created a highly accurate approach for the real-time detection of the ball.Furthermore,it also addressed the lack of jersey number datasets by creating a new dataset with more than 6,500 images for numbers ranging from 0 to 99.Since achieving a high perfor-mance in deep learning requires a large training set,and the collected dataset was not enough,this research utilized transfer learning(TL)to first pretrain the jersey number detection model on another large dataset and then fine-tune it on the target dataset to increase the accuracy.To test the proposed system,this paper presents a comprehensive evaluation of its individual stages as well as of the sys-tem as a whole.
关 键 词:Football video analysis player detection ball detection team assignment jersey number recognition
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.199