机构地区:[1]长安大学地质工程与测绘学院,陕西西安710069 [2]信息产业部电子综合勘察研究院,陕西西安710054 [3]长安大学运输工程学院,陕西西安710069 [4]陕西省地质环境监测总站,陕西西安710054
出 处:《岩石力学与工程学报》2023年第3期558-574,共17页Chinese Journal of Rock Mechanics and Engineering
基 金:中央高校基本科研业务费专项资金(300102261720,300102341308);陕西省自然科学基础研究计划项目(2019JQ–685)。
摘 要:为提高区域降雨型滑坡的预警精度,以陕南秦巴山区为例,首先通过人工神经网络(ANN)和逻辑回归模型(LR)进行滑坡易发性建模,使用滑坡发生频率比(FR)对易发性模型进行检验和校准,用来表达滑坡发生的空间概率;其次在敏感性分析的基础上选取最优的降雨变量组合和衰减系数,在二维贝叶斯公式的基础上构建概率型降雨阈值模型,用以计算滑坡发生的时间概率,并使用2016~2020年的降雨数据进行验证;之后在贝叶斯公式的基础上对滑坡发生的时空概率进行耦合,构建研究区降雨型滑坡的概率型预警模型(PLEWM),并对2016~2020年的雨季(7~9月份)逐日进行模拟预警;最后分别从预警效果和成本效益角度出发,使用预警成本投入、滑坡造成的损失、预警成功率、漏报率、误报率等指标对预警模型的性能进行评估。结果表明:(1)研究区构建降雨阈值模型最优的变量组合为有效降雨量–持时(EE-D),最优的衰减系数为0.816;(2)概率型阈值模型预测2016~2020年发生致灾降雨213.71起,实际发生201起,累积误差为10.07%,各概率区间内的预测值与实际发生数量沿着斜率为1的对角线分布;(3)模拟预警结果显示,PLEWM模型的成本投入和滑坡造成的损失分别为传统启发式预警模型的62.86%和63.48%;预警成功率、漏报率和误报率分别为63.99%,34.71%和1.3%,均优于启发式预警模型;而在长持时高强度降雨条件下,PLEWM的预警成功率显著高于传统预警模型。To improve the early warning accuracy of rainfall-induced landslides,the Qinba Mountains region in southern Shaanxi province is taken as an example.At first,artificial neural network(ANN)and logistic regression model(LR)were used to establish the landslide susceptibility model,and the established susceptibility model was tested and corrected by frequency ratio model(FR)to express the spatial probability of landslide occurrence;Secondly,sensitivity analysis method was employed to select the optimal rainfall variables and the attenuation coefficient K,and then,two-dimensional Bayesian approach was be used to establish probabilistic threshold model,which can be used to calculate the temporal probability of landslide.The model was tested by the rainfall data from 2016 to 2020;Then,the spatial probability and temporal probability of rainfall-induced landslides were coupled base on Bayesian formula,and a probabilistic early warning model for rainfall-induced landslide(PLEWM)was proposed.To test the performance advantages of PLEWM,PLEWM and traditional early warning model were separately used to issue warning information day-by-day for the rainy season(July to September)from 2016 to 2020.It is proposed to use the investment of operating LEWM(Invest),losses caused by landslides(Loss),correct alert rate,missed alert rate and false alert rate as warning model performance indicators,to compare the performance differences between the PLEWM and traditional early warning model.The results show that:(1)EE-D is the optimal combination for rainfall threshold model in the study area,and the optimal attenuation coefficient K is 0.816.(2)Probabilistic threshold model predicts that 213.71 triggering rainfalls will occur from 2016 to 2020,and 201 actually recorded,with a cumulative error of 10.07%,the predicted triggering rainfall and the actual recorded in each probability intervals are distributed along a diagonal line with a slope of 1.(3)According to the statistics of the warning information issued in the rainy season from 2016 to
关 键 词:边坡工程 降雨型滑坡 滑坡易发性 概率型降雨阈值 贝叶斯公式 概率型预警模型
分 类 号:P642[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...