VANISHING VISCOSITY LIMIT FOR THE 3D INCOMPRESSIBLE MICROPOLAR EQUATIONS IN A BOUNDED DOMAIN  

在线阅读下载全文

作  者:储洋洋 肖跃龙 Yangyang CHU;Yuelong XIAO(Hunan Key Laboratory for Computation and Simulation in Science and Engineering,School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,China)

机构地区:[1]Hunan Key Laboratory for Computation and Simulation in Science and Engineering,School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,China

出  处:《Acta Mathematica Scientia》2023年第2期959-974,共16页数学物理学报(B辑英文版)

基  金:supported by the NSFC(11871412);the Postgraduate Scientific Research Innovation Project of Xiangtan University(XDCX2020B088)。

摘  要:In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain.In particular,we establish the uniform estimate of the strong solutions for when the boundary is flat.Furthermore,we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero(i.e.,(ε,χ,γ,κ)→0).

关 键 词:incompressible micropolar equations initial-and boundary-valuc problcm van-ishingviscositylimit 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象