检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭勇 罗敏[1] 幸芮 GUO Yong;LUO Min;XING Rui(Business School,Central South University,Changsha 410083,China)
机构地区:[1]中南大学商学院,长沙410083
出 处:《情报科学》2023年第2期95-100,156,共7页Information Science
摘 要:【目的/意义】挖掘药物筛选工作中的隐性知识,借助机器学习的预测能力替代生物实验方法,减少制药流程的研发时间和经济成本。【方法/过程】提出一种面向知识发现的ADMET情报预测理论框架,以4种传统机器学习方法和2种集成学习方法,分别构建6种分类预测模型,提取药物的隐性知识,比较不同模型的优越性,评估最优模型的经济价值。【结果/结论】以药物分子描述符信息预测ADMET具有可行性,6种模型性能表现综合排序结果为随机森林、梯度提升决策树、Logistic回归、支持向量机、K近邻、高斯朴素贝叶斯。前沿信息技术能够有效应用于药物知识发现,信息经济学分析可预见创造可观收益,是未来制药工艺降本增效的重要手段。【创新/局限】未来应融合专家知识、追加试验验证、丰富参考指标。【Purpose/significance】Excavate the tacit knowledge in the screening of medicines, replace biological experimental methods with the prediction ability of machine learning(ML), and reduce R&D period and economic cost of pharmaceutical process.【Method/process】This paper proposes ADMET intelligence prediction theoretical framework for knowledge discovery and four traditional machine learning methods and two ensemble learning methods are used to construct Six classification prediction models. We extract the tacit knowledge, compare the advantages of different models, and evaluate the economic value of the optimal model.【Result/conclusion】It is feasible to predict ADMET with the molecular descriptor information. The comprehensive ranking results of the six models are RF, GBDT, LR, SVM, KNN and GNB. The cutting-edge information technologies can be effectively applied to the drug knowledge discovery. Information economics analysis can predict a positive revenue, which is an important means to reduce costs and increase efficiency of pharmaceutical processes in the future.【Innovation/limitation】We should integrate expert knowledge, add experimental verification and enrich reference indicators later.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195