基于IQGA的船舶电力系统故障定位方法  

Research on Fault Location Method of Ship's Electric System Based on IQGA

在线阅读下载全文

作  者:郑聪 周海峰[1,2] 郑东强 林忠华[3] 张兴杰[4] ZHENG Cong;ZHOU Haifeng;ZHENG Dongqiang;LIN Zhonghua;ZHANG Xingjie(School of Marine Engineering,Jimei University,Xiamen,361021,China;Fujian Province Key Laboratory of Naval Architecture and Marine Engineering,Xiamen,361021,China;School of Marine Equipment and Mechanical Engineering,Jimei University,Xiamen,361021,China;Navigation College,Jimei University,Xiamen,361021,China)

机构地区:[1]集美大学轮机工程学院,福建厦门361021 [2]福建省船舶与海洋工程重点实验室,福建厦门361021 [3]集美大学海洋装备与机械工程学院,福建厦门361021 [4]集美大学航海学院,福建厦门361021

出  处:《集美大学学报(自然科学版)》2023年第1期51-59,共9页Journal of Jimei University:Natural Science

基  金:国家自然科学基金项目(51179074);福建省自然科学基金项目(2021J01839,2018J01495);产学研项目(S20127);福建省教育厅项目(JAT200242,JAT170318)。

摘  要:为了快速精准定位船舶电力系统故障,争取宝贵的船舶电力抢修时间,提出一种改进的量子遗传算法(improved quantum genetic algorithm,IQGA)。首先,搭建船舶电力系统的数学模型,把故障定位问题转化为求目标函数最优问题;接着,将量子计算引入遗传算法(genetic algorithm,GA)中,采用双链量子比特编码方式,改进量子旋转门的角度更新策略;最后,加入量子非门实现染色体变异操作,增强算法收敛性能。仿真实验结果表明,改进量子遗传算法能够精准定位故障区段,并且较传统算法有着更为显著的收敛性能。In order to quickly and accurately locate the fault of a power system and gain valuable time for ship power repair,a fault location method of ship power system based on improved quantum genetic algorithm(IQGA)was proposed.Firstly,the mathematical model of the ship power system was built,and the fault location problem was transformed into the problem of finding the optimal objective function.Secondly,the quantum computing is introduced into the genetic algorithm(GA),and the double-chain quantum bit encoding method is adopted,and the angle update strategy of quantum rotation gate is improved,as well as the quantum non-gate were also employed.The simulation results show that the improved quantum genetic algorithm can locate the faulty segment effectively and precisely,and has more significant convergence performance than the traditional algorithm.

关 键 词:船舶电力系统 故障定位 量子遗传算法 量子旋转门 量子非门 

分 类 号:S968.43[农业科学—水产养殖]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象