Convergent and Orthogonality Preserving Schemes for Approximating the Kohn-Sham Orbitals  

在线阅读下载全文

作  者:Xiaoying Dai Liwei Zhang Aihui Zhou 

机构地区:[1]LSEC,Institute of Computational Mathematics and Scientific/Engineering Computing,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2023年第1期1-25,共25页高等学校计算数学学报(英文版)

基  金:This work was supported by the National Key R&D Program of China under grants 2019YFA0709600,2019YFA0709601;the National Natural Science Foundation of China under grant 12021001.

摘  要:To obtain convergent numerical approximations without using any orthogonalization operations is of great importance in electronic structure calculations.In this paper,we propose and analyze a class of iteration schemes for the discretized Kohn-Sham Density Functional Theory model,with which the iterative approximations are guaranteed to converge to the Kohn-Sham orbitals without any orthogonalization as long as the initial orbitals are orthogonal and the time step sizes are given properly.In addition,we present a feasible and efficient approach to get suitable time step sizes and report some numerical experiments to validate our theory.

关 键 词:Gradient flow based model density functional theory orthogonality preserving scheme convergence temporal discretization 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象