Mining Fine-Grain Face Forgery Cues with Fusion Modality  

在线阅读下载全文

作  者:Shufan Peng Manchun Cai Tianliang Lu Xiaowen Liu 

机构地区:[1]People’s Public Security University of China,Beijing 100038,China

出  处:《Computers, Materials & Continua》2023年第5期4025-4045,共21页计算机、材料和连续体(英文)

基  金:This study is supported by the Fundamental Research Funds for the Central Universities of PPSUC under Grant 2022JKF02009.

摘  要:Face forgery detection is drawing ever-increasing attention in the academic community owing to security concerns.Despite the considerable progress in existing methods,we note that:Previous works overlooked finegrain forgery cues with high transferability.Such cues positively impact the model’s accuracy and generalizability.Moreover,single-modality often causes overfitting of the model,and Red-Green-Blue(RGB)modal-only is not conducive to extracting the more detailed forgery traces.We propose a novel framework for fine-grain forgery cues mining with fusion modality to cope with these issues.First,we propose two functional modules to reveal and locate the deeper forged features.Our method locates deeper forgery cues through a dual-modality progressive fusion module and a noise adaptive enhancement module,which can excavate the association between dualmodal space and channels and enhance the learning of subtle noise features.A sensitive patch branch is introduced on this foundation to enhance the mining of subtle forgery traces under fusion modality.The experimental results demonstrate that our proposed framework can desirably explore the differences between authentic and forged images with supervised learning.Comprehensive evaluations of several mainstream datasets show that our method outperforms the state-of-the-art detection methods with remarkable detection ability and generalizability.

关 键 词:Face forgery detection fine-grain forgery cues fusion modality adaptive enhancement 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象