检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Noureen Talpur Said Jadid Abdulkadir Mohd Hilmi Hasan Hitham Alhussian Ayed Alwadain
机构地区:[1]Computer and Information Sciences Department,Universiti Teknologi PETRONAS,Seri Iskandar,32610,Perak,Malaysia [2]Computer Science Department,Community College,King Saud University,Riyadh,145111,Saudi Arabia
出 处:《Computers, Materials & Continua》2023年第3期5799-5820,共22页计算机、材料和连续体(英文)
基 金:This research was supported by a Researchers Supporting Project Number(RSP2021/309);King Saud University,Riyadh,Saudi Arabia.The authors wish to acknowledge Yayasan Universiti Teknologi Petronas for supporting this work through the research grant(015LC0-308).
摘 要:Machine learning(ML)practices such as classification have played a very important role in classifying diseases in medical science.Since medical science is a sensitive field,the pre-processing of medical data requires careful handling to make quality clinical decisions.Generally,medical data is considered high-dimensional and complex data that contains many irrelevant and redundant features.These factors indirectly upset the disease prediction and classification accuracy of any ML model.To address this issue,various data pre-processing methods called Feature Selection(FS)techniques have been presented in the literature.However,the majority of such techniques frequently suffer from local minima issues due to large solution space.Thus,this study has proposed a novel wrapper-based Sand Cat SwarmOptimization(SCSO)technique as an FS approach to find optimum features from ten benchmark medical datasets.The SCSO algorithm replicates the hunting and searching strategies of the sand cat while having the advantage of avoiding local optima and finding the ideal solution with minimal control variables.Moreover,K-Nearest Neighbor(KNN)classifier was used to evaluate the effectiveness of the features identified by the proposed SCSO algorithm.The performance of the proposed SCSO algorithm was compared with six state-of-the-art and recent wrapper-based optimization algorithms using the validation metrics of classification accuracy,optimum feature size,and computational cost in seconds.The simulation results on the benchmark medical datasets revealed that the proposed SCSO-KNN approach has outperformed comparative algorithms with an average classification accuracy of 93.96%by selecting 14.2 features within 1.91 s.Additionally,the Wilcoxon rank test was used to perform the significance analysis between the proposed SCSOKNN method and six other algorithms for a p-value less than 5.00E-02.The findings revealed that the proposed algorithm produces better outcomes with an average p-value of 1.82E-02.Moreover,potential future directions
关 键 词:Machine learning OPTIMIZATION feature selection CLASSIFICATION medical data
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200