检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Computers, Materials & Continua》2023年第3期6081-6099,共19页计算机、材料和连续体(英文)
摘 要:Human pose estimation(HPE)is a procedure for determining the structure of the body pose and it is considered a challenging issue in the computer vision(CV)communities.HPE finds its applications in several fields namely activity recognition and human-computer interface.Despite the benefits of HPE,it is still a challenging process due to the variations in visual appearances,lighting,occlusions,dimensionality,etc.To resolve these issues,this paper presents a squirrel search optimization with a deep convolutional neural network for HPE(SSDCNN-HPE)technique.The major intention of the SSDCNN-HPE technique is to identify the human pose accurately and efficiently.Primarily,the video frame conversion process is performed and pre-processing takes place via bilateral filtering-based noise removal process.Then,the EfficientNet model is applied to identify the body points of a person with no problem constraints.Besides,the hyperparameter tuning of the EfficientNet model takes place by the use of the squirrel search algorithm(SSA).In the final stage,the multiclass support vector machine(M-SVM)technique was utilized for the identification and classification of human poses.The design of bilateral filtering followed by SSA based EfficientNetmodel for HPE depicts the novelty of the work.To demonstrate the enhanced outcomes of the SSDCNN-HPE approach,a series of simulations are executed.The experimental results reported the betterment of the SSDCNN-HPE system over the recent existing techniques in terms of different measures.
关 键 词:Parameter tuning human pose estimation deep learning squirrel search algorithm activity recognition
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.2.133