Energy-Efficient Scheduling Based on Task Migration Policy Using DPM for Homogeneous MPSoCs  

在线阅读下载全文

作  者:Hamayun Khan Irfan Ud din Arshad Ali Sami Alshmrany 

机构地区:[1]Department of Electrical Engineering,Faculty of Engineering&Technology Superior University Lahore,54000,Pakistan [2]Department of Computer Science,Faculty of Computer Science&IT Superior University Lahore,54000,Pakistan [3]Faculty of Computer and Information Systems,Islamic University of Madinah,Al Madinah Al Munawarah,42351,Saudi Arabia

出  处:《Computers, Materials & Continua》2023年第1期965-981,共17页计算机、材料和连续体(英文)

摘  要:Increasing the life span and efficiency of Multiprocessor System on Chip(MPSoC)by reducing power and energy utilization has become a critical chip design challenge for multiprocessor systems.With the advancement of technology,the performance management of central processing unit(CPU)is changing.Power densities and thermal effects are quickly increasing in multi-core embedded technologies due to shrinking of chip size.When energy consumption reaches a threshold that creates a delay in complementary metal oxide semiconductor(CMOS)circuits and reduces the speed by 10%–15%because excessive on-chip temperature shortens the chip’s life cycle.In this paper,we address the scheduling&energy utilization problem by introducing and evaluating an optimal energy-aware earliest deadline first scheduling(EA-EDF)based technique formultiprocessor environments with task migration that enhances the performance and efficiency in multiprocessor systemon-chip while lowering energy and power consumption.The selection of core andmigration of tasks prevents the system from reaching itsmaximumenergy utilization while effectively using the dynamic power management(DPM)policy.Increase in the execution of tasks the temperature and utilization factor(u_(i))on-chip increases that dissipate more power.The proposed approach migrates such tasks to the core that produces less heat and consumes less power by distributing the load on other cores to lower the temperature and optimizes the duration of idle and sleep times across multiple CPUs.The performance of the EA-EDF algorithm was evaluated by an extensive set of experiments,where excellent results were reported when compared to other current techniques,the efficacy of the proposed methodology reduces the power and energy consumption by 4.3%–4.7%on a utilization of 6%,36%&46%at 520&624 MHz operating frequency when particularly in comparison to other energy-aware methods for MPSoCs.Tasks are running and accurately scheduled to make an energy-efficient processor by controlling and managing the

关 键 词:Dynamic power management dynamic voltage&frequency scaling dynamic thermal management multiprocessor system on chip complementary metal oxide semiconductor reliability 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象