Preventing Cloud Network from Spamming Attacks Using Cloudflare and KNN  

在线阅读下载全文

作  者:Muhammad Nadeem Ali Arshad Saman Riaz SyedaWajiha Zahra Muhammad Rashid Shahab S.Band Amir Mosavi 

机构地区:[1]Department of Computer Science,Abasyn University,Islamabad,44000,Pakistan [2]Department of Computer Science,National University of Technology,Islamabad,44000,Pakistan [3]Future Technology Research Center,National Yunlin University of Science and Technology,Douliu,Yunlin,64002,Taiwan [4]Institute of Information Society,University of Public Service,Budapest,1083,Hungary [5]John von Neumann Faculty of Informatics,Obuda University,Budapest,Hungary [6]Institute of Information Engineering,Automation and Mathematics,Slovak University of Technology in Bratislava,Slovakia

出  处:《Computers, Materials & Continua》2023年第2期2641-2659,共19页计算机、材料和连续体(英文)

摘  要:Cloud computing is one of the most attractive and cost-saving models,which provides online services to end-users.Cloud computing allows the user to access data directly from any node.But nowadays,cloud security is one of the biggest issues that arise.Different types of malware are wreaking havoc on the clouds.Attacks on the cloud server are happening from both internal and external sides.This paper has developed a tool to prevent the cloud server from spamming attacks.When an attacker attempts to use different spamming techniques on a cloud server,the attacker will be intercepted through two effective techniques:Cloudflare and K-nearest neighbors(KNN)classification.Cloudflare will block those IP addresses that the attacker will use and prevent spamming attacks.However,the KNN classifiers will determine which area the spammer belongs to.At the end of the article,various prevention techniques for securing cloud servers will be discussed,a comparison will be made with different papers,a conclusion will be drawn based on different results.

关 键 词:Intrusion prevention system SPAMMING KNN classification SPAM cyber security BOTNET 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象