检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shijie Hu Xiaoyu Li Jiayu Bai Hang Lei Weizhong Qian Sunqiang Hu Cong Zhang Akpatsa Samuel Kofi Qian Qiu Yong Zhou Shan Yang
机构地区:[1]School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu,610054,China [2]Science and Technology on Altitude Simulation Laboratory,Sichuan Gas Turbine Establishment Aero Engine Corporation of China,Mianyang,621000,China [3]School of Power and Energy,Northwestern Polytechnical University,Xi’an,710072,China [4]School of Computer Science,Southwest Petroleum University,Chengdu,610500,China [5]Department of Chemistry,Physics and Atmospheric Sciences,Jackson State University,Jackson,MS 39217,USA
出 处:《Computers, Materials & Continua》2023年第2期2803-2815,共13页计算机、材料和连续体(英文)
基 金:Major Science and Technology Project of Sichuan Province[No.2022YFG0315,2022YFG0174];Sichuan Gas Turbine Research Institute stability support project of China Aero Engine Group Co.,Ltd.[No.GJCZ-2019-71].
摘 要:When the Transformer proposed by Google in 2017,it was first used for machine translation tasks and achieved the state of the art at that time.Although the current neural machine translation model can generate high quality translation results,there are still mistranslations and omissions in the translation of key information of long sentences.On the other hand,the most important part in traditional translation tasks is the translation of key information.In the translation results,as long as the key information is translated accurately and completely,even if other parts of the results are translated incorrect,the final translation results’quality can still be guaranteed.In order to solve the problem of mistranslation and missed translation effectively,and improve the accuracy and completeness of long sentence translation in machine translation,this paper proposes a key information fused neural machine translation model based on Transformer.The model proposed in this paper extracts the keywords of the source language text separately as the input of the encoder.After the same encoding as the source language text,it is fused with the output of the source language text encoded by the encoder,then the key information is processed and input into the decoder.With incorporating keyword information from the source language sentence,the model’s performance in the task of translating long sentences is very reliable.In order to verify the effectiveness of the method of fusion of key information proposed in this paper,a series of experiments were carried out on the verification set.The experimental results show that the Bilingual Evaluation Understudy(BLEU)score of the model proposed in this paper on theWorkshop on Machine Translation(WMT)2017 test dataset is higher than the BLEU score of Transformer proposed by Google on the WMT2017 test dataset.The experimental results show the advantages of the model proposed in this paper.
关 键 词:Key information transformer FUSION neural machine translation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.209.115