An Efficient Hybrid Model for Arabic Text Recognition  

在线阅读下载全文

作  者:Hicham Lamtougui Hicham El Moubtahij Hassan Fouadi Khalid Satori 

机构地区:[1]LIIAN Laboratory,Faculty of Sciences Dhar-Mahraz,Fez,30000,Morocco [2]Modeling,Systems and Technologies of Information Team,University of Ibn Zohr,Agadir

出  处:《Computers, Materials & Continua》2023年第2期2871-2888,共18页计算机、材料和连续体(英文)

摘  要:In recent years,Deep Learning models have become indispensable in several fields such as computer vision,automatic object recognition,and automatic natural language processing.The implementation of a robust and efficient handwritten text recognition system remains a challenge for the research community in this field,especially for the Arabic language,which,compared to other languages,has a dearth of published works.In this work,we presented an efficient and new system for offline Arabic handwritten text recognition.Our new approach is based on the combination of a Convolutional Neural Network(CNN)and a Bidirectional Long-Term Memory(BLSTM)followed by a Connectionist Temporal Classification layer(CTC).Moreover,during the training phase of the model,we introduce an algorithm of data augmentation to increase the quality of data.Our proposed approach can recognize Arabic handwritten texts without the need to segment the characters,thus overcoming several problems related to this point.To train and test(evaluate)our approach,we used two Arabic handwritten text recognition databases,which are IFN/ENIT and KHATT.The Experimental results show that our new approach,compared to other methods in the literature,gives better results.

关 键 词:Deep learning arabic handwritten text recognition convolutional neural network(CNN) bidirectional long-term memory(BLSTM) connectionist temporal classification(CTC) 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象