基于多种群遗传算法的配电系统优化节能策略研究  被引量:1

Energy⁃saving Strategy of Power Distribution System Optimization Based on Multi⁃Population Genetic Algorithm

在线阅读下载全文

作  者:杜振华 曹正宇 窦如滨 严少刚 朱明峰 DU Zhenhua;CAO Zhengyu;DOU Rubin;YAN Shaogang;ZHU Mingfeng(CNOOC Energy Conservation and Environmental Protection Service Co.Ltd,Tianjin 300457,China)

机构地区:[1]中海油节能环保服务有限公司,天津300457

出  处:《建筑节能(中英文)》2023年第3期119-122,共4页Building Energy Efficiency

摘  要:在碳中和的发展背景下,配电系统的节能成为企业节能减排的重要手段之一。由于采用单一的节能措施不能获得较高的节电量,因此需要采取多种优化节能措施。以配电线路截面选择、无功补偿、谐波治理为主要优化策略,给出了各种策略的节能量计算方法。再将节能量和节能效益最佳设定为最优化目标,构建出配电系统多目标优化节能的策略及其数学模型。在问题求解时,将节能策略构建为有边界的组合优化问题,并采用多种群遗传算法进行求解。实例分析表明,优化节能策略的数学模型可靠,算法收敛速度快,本策略能够为配电系统的优化节能提供可靠的分析方法。Under the background of carbon neutralization,the energy⁃saving of power distribution system has become one of the important means of energy⁃saving and emission reduction for enterprises.Individual energy⁃saving measure can not obtain higher energy saving,so a variety of optimization energy⁃saving measures are needed.The cable section selection,reactive power compensation and harmonic control are regarded as the main optimal strategies,and presented the calculation methods of energy⁃saving strategies.Then setting the energy⁃saving and its benefit as the main objectives,and constructed a multi⁃objective optimizing energy⁃saving strategy and its mathematical model of power distribution system.When solving the problems,the strategies were constructed as a bounded and combinatorial optimization problem,and solved by multi⁃population genetic algorithm.The case analysis shows that the mathematical model for the optimizing energy⁃saving strategy is reliable and the algorithm converges fast,this strategy can provide reliable analysis method for optimal energy⁃saving of power distribution system.

关 键 词:配电系统 经济电流密度 无功补偿 谐波 节能策略 多种群遗传算法 

分 类 号:TU98[建筑科学—城市规划与设计] TM744[电气工程—电力系统及自动化] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象