检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付子轩 周鹏 汪鑫[3] 任海燕 罗静静 郭义 王西墨[7] FU Zixuan;ZHOU Peng;WANG Xin;REN Haiyan;LUO Jingjing;GUO Yi;WANG Ximo(School of Medical Engineering and Translational Medicine,Tianjin University,Tianjin 300072,China;School of Precision Instrument and Opto-electronics Engineering,Tianjin University,Tianjin 300072,China;School of Computer Science,Beijing University of Posts and Telecommunications,Beijing 100876,China;School of Traditional Chinese Medicine,Tianjin University of Traditional Chinese Medicine,Tianjin 301617,China;Tianjin Tianzhong Yimai Technology Development Co.,Ltd.,Tianjin 300384,China;Academy for Engineering&Technology,Fudan University,Shanghai 200433,China;Tianjin Hospital of Integrated Traditional Chinese and Western Medicine,Tianjin 300102,China)
机构地区:[1]天津大学医学工程与转化医学研究院,天津300072 [2]天津大学精密仪器与光电子工程学院,天津300072 [3]北京邮电大学计算机学院,北京100876 [4]天津中医药大学中医学院,天津301617 [5]天津市天中依脉科技开发有限公司,天津300384 [6]复旦大学工程与应用技术研究院,上海200433 [7]天津市中西医结合医院,天津300102
出 处:《中国中医药信息杂志》2023年第4期18-24,共7页Chinese Journal of Information on Traditional Chinese Medicine
基 金:中国工程院重大咨询项目(2019-ZD-6-03)。
摘 要:目的 针对知识图谱链接预测中缺少多关系预测推理的问题,提出基于规则+马尔可夫逻辑网(MLN)的多路链接预测推理算法,为中医临床提供辅助决策支持。方法 以中医脏腑辨证为研究背景,构建基于Neo4j图数据库的知识图谱,包括1 263个实体节点和4 105个语义关系。基于改进规则的知识推理设置初始权重,并使用MLN和吉布斯采样(Gibbs sampling)训练权重,以完成输入任意个数四诊数据得到证候推理结果的链接预测任务。结果 对中医脏腑辨证的70个证候进行推理,结果AUC值为98.6%,精确度为98.6%,排序分为0.297,较基于传统规则链接预测算法的精确度高4.3%,具有更准确的推理结果。结论 该模型能较好完成多对多复杂路径关系的链接预测任务,同时实现中医脏腑辨证的四诊合参及个性化推荐功能,辅助中医临床诊疗。Objective To propose a multi-link prediction reasoning algorithm based on rule + Markov logical network(MLN) in view of the lack of multi-relation predictive reasoning in knowledge graph link prediction;To provide auxiliary decision support for TCM clinic.Methods Taking TCM viscera syndrome differentiation as the research background,a knowledge graph based on Neo4j graph database was constructed,including 1 263 entity nodes and 4 105 semantic relationships.The initial weights were set based on improved rules of knowledge reasoning,and the weights were trained by MLN and Gibbs sampling to complete the link prediction task of syndrome reasoning results obtained by inputting any multiple four-diagnosis data.Results The syndrome reasoning was carried out for 70 syndromes of TCM syndrome differentiation,the AUC was 98.6%,the accuracy was 98.6%,and the ranking score was 0.297,which was 4.3% higher than the accuracy of the traditional rule link prediction algorithm and had more accurate reasoning results.Conclusion The model can better complete the link prediction task of multi-pair and multi-complex path relationship,and realize the combination of four diagnostic methods of TCM viscera syndrome differentiation and the personalized recommendation function to assist traditional Chinese medicine clinical diagnosis and treatment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.95.186