多尺度特征融合与新型判别器的无监督分割  被引量:1

Unsupervised SegmentationAlgorithmBased onMulti-Scale Feature Fusion andNovelDiscriminator

在线阅读下载全文

作  者:韩宗桓 刘名果 李珅 陈立家[1] 田敏 兰天翔 梁倩 HAN Zonghuan;LIU Mingguo;LI Shen;CHEN Lijia;TIAN Min;LAN Tianxiang;LIANG Qian(School of Physics and Electronics,Henan University,Kaifeng,Henan 475004,China;Kaifeng Pingmei New Carbon Materials Technology Co.,Ltd.,Kaifeng,Henan 475004,China)

机构地区:[1]河南大学物理与电子学院,河南开封475004 [2]开封平煤新型炭材料科技有限公司,河南开封475004

出  处:《计算机工程与应用》2023年第7期152-162,共11页Computer Engineering and Applications

基  金:国家自然科学基金(61901158);河南省高等学校重点科研项目(19A520015);河南省科技厅项目(202102210121,212102210500);开封市重大科技专项(20ZD014,2001016)。

摘  要:工厂在智能化升级过程中,有很多应用场景需要用到语义分割。然而使用全监督语义分割方法需要耗费大量人力成本进行样本标注,所以研究无监督语义分割方法很有必要。针对本地某碳素厂石墨电极压印字符的语义分割问题,提出了一种无监督语义分割方法 CycleGAN-Seg。结合跨层连接和空洞空间池化金字塔(ASPP)的思想,构建了新型多尺度特征融合生成器,加入了改进的注意力模块以提升网络性能。同时提出一种新的U形判别器对重构图像进行判别。在石墨电极表面压印字符数据集语义分割实验中,MIoU值可达70.81%,分割效果基本满足识别需要,有望在该工业场景中替代全监督学习方法,以节省人工标注成本,达到快速训练和部署的目的。In the process of intelligent upgrading of factories,there are many application scenarios that need to use semantic segmentation algorithms.However,the use of fully supervised semantic segmentation methods requires a lot of labor cost for sample labeling,so it is necessary to study unsupervised semantic segmentation methods.Aiming at the semantic segmentation of characters imprinted by graphite electrodes in a local carbon factory,an unsupervised semantic segmentation method CycleGAN-Seg is proposed.Combining the idea of cross-layer connection and atrous spatial pooling pyramid(ASPP),a novel multi-scale feature fusion generator is constructed,and an improved attention module is added to improve the network performance.At the same time,a new U-shaped discriminator is proposed to discriminate the reconstructed images.In the semantic segmentation experiment of the imprinted character dataset on the graphite electrode surface,the MIoU value can reach 70.81%.The semantic segmentation effect basically meets the recognition needs,and it is expected to replace the fully supervised learning method in this industrial scenario to save the cost of manual annotation and achieve the purpose of rapid training and deployment.

关 键 词:多尺度特征融合 注意力模块 无监督分割 表面压印字符 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象