检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾宪阳 刘静 王伟[1] 姚文倩[2] 吴静 刘小利 韩龙飞[2] 王文鑫 邢宇堃 杜瑞林 杨绪前 ZENG XianYang;LIU Jing;WANG Wei;YAO WenQian;WU Jing;LIU XiaoLi;HAN LongFei;WANG WengXin;XING YuKun;DU RuiLin;YANG XuQian(State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration,Beijing 100029,China;Institude of Surface-Earth System Science,School of Earth System Science,Tianjin University,Tianjin 300072,China;Hangzhou Five Generation Communication and Big Data Research Institute,Hangzhou 310012,China;Key Laboratory of Earthquake Geodesy,Institute of Seismology,China Earthquake Administration,Wuhan 430071,China)
机构地区:[1]中国地震局地质研究所地震动力学国家重点实验室,北京100029 [2]天津大学表层地球系统科学研究院,地球系统科学学院,天津300072 [3]杭州五代通讯与大数据研究院,杭州310012 [4]中国地震局地震研究所地震大地测量重点实验室,武汉430071
出 处:《地球物理学报》2023年第3期1098-1112,共15页Chinese Journal of Geophysics
基 金:国家重点研发计划(2021YFC3000605-04);国家自然科学基金(U1839203,42030305);中国地震局地质研究所基本科研业务项目(IGCEA1812);中国地震局地震科技星火计划项目(XH22003C)联合资助。
摘 要:大地震的同震地表破裂高分辨率填图对于理解破裂传播机制、量化地震灾害和地震危险性等至关重要;无人机航片和地形数据为地表破裂研究提供大量的高精度数据.同时基于海量数据的人工填图耗时费力,效率较低;机器学习(Machine learning)技术的发展为快速处理这类高分辨率图像数据提供了新思路.本文以2021年玛多M_(W)7.4级地震震后高精度无人机航片为基础数据,展示了机器学习技术快速、高效识别地表破裂的潜力.基于卷积神经网络Canny算法,详细讨论了无人机数字正射影像的处理流程和关键步骤,包括准备训练数据、训练和后处理.对比人工识别和机器识别的结果显示,本文所提出的方法可以有效地绘制地表破裂,为未来研究大地震地表破裂提供新思路.同时,展示了机器学习在地震地质、地表过程和地貌等定量研究中的巨大优势和广阔前景.High-resolution mapping of coseismic surface rupture of large earthquakes is very important for better understanding the behavior and mechanism of earthquake rupture and for quantifying earthquake hazards. High-resolution UAV imagery and topographic data provide a large volume of valuable images of the surface rupture. Manual mapping of fractures on many high-resolution images could be labor-intensive, time-consuming, and thus inefficient. Machine learning provides more possibilities for the rapid processing of such big-data images. In this paper, we demonstrate the potential of Machine learning techniques to rapid, efficient, and complete identification of fractures of the surface rupture zone using high-precision UAV images of the 2021 Madoi M_(W)7.4 earthquake. We applied the canny algorithm(based on Convolutional Neural Networks) to discuss the processing flow and key steps of UAV digital orthophoto in detail, including preparing training data, training, and post-processing. By comparing the interpretations of manual mapping and machine recognition, the proposed method can effectively map surface rupture, providing a tool for studying future large earthquakes. Machine learning has advantages and broad prospects in quantitative studies of earthquake geology, surface processes and geomorphology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30