检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《统计与决策》2023年第6期143-148,共6页Statistics & Decision
基 金:国家自然科学基金资助项目(11774311,10904128)。
摘 要:为了提高金融时序预测的准确性及泛化性,文章提出了基于主成分分析法和注意力机制来优化长短时记忆模型(PCA-Attention-LSTM)的消费行业板块指数预测方法。首先对指数日常数据生成技术指标,然后通过主成分分析法提取重要特征,根据长短时记忆神经网络(LSTM)学习输入特征的内部变化规律,并利用注意力机制计算LSTM隐层状态的不同权重,最后结合注意力权重和LSTM神经网络进行指数预测。结果表明,优化后的LSTM模型对消费行业板块指数走势具有较强的预测能力。此外,在预测方法的基础上引入了股票的异同移动平均线和均线指标,提供了一种每日轮动自动捕捉交易点的短频量化交易策略。
关 键 词:长短时记忆网络 技术指标 主成分分析法 注意力机制 行业指数 量化交易
分 类 号:F832.51[经济管理—金融学] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112