检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马春娜[1] 吴双胜[1] 孙瑛[1] 段玮[1] 张莉[1] 张姣姣 杨鹏[1] 王全意[1] MA Chun-na;WU Shuang-sheng;SUN Ying;DUAN Wei;ZHANG Li;ZHANG Jiao-jiao;YANG Peng;WANG Quan-yi(Beijing Center for Disease Prevention and Control,Beijing 100013,China)
出 处:《首都公共卫生》2023年第1期28-32,共5页Capital Journal of Public Health
摘 要:目的探索北京市猩红热发病的时空分布、演变特征及热点区域,为制定精准防控措施提供依据。方法采用SaTScan软件进行时间扫描和时空扫描分析。利用R软件spdep包进行全局空间自相关分析以判断有无聚集,采用局部Getis-Ord(G_( i )^(∗))进行热点分析,定位发病的局部聚集区域。结果2015-2020年北京市猩红热发病率由西南到东北呈逐渐降低趋势。全局空间自相关分析显示,2015-2020年猩红热发病率存在空间聚集现象(Moran’s I=0.406,P<0.001),且为高-高聚集[G_( i )^(∗)=0.005,E(G_( i )^(∗))=0.003]。热点分析结果显示,10个区的48个乡、镇、街道为热点区域,主要分布于南部及西南部郊区,涉及区主要为大兴(12个)、房山(7个)和门头沟区(6个)。时空分析显示,2017年4月-2019年1月北京市东南方向存在一个聚集区,2017年4月-2019年12月北京西南方向存在一个聚集区域。结论2017-2019年北京市猩红热发病略有增加。丰台、房山、门头沟和大兴区等各区交界地应为北京市猩红热防控的重点地区,应在该区域重点人群中加强环境治理,并开展针对呼吸道传染病的预防措施及宣传教育。Objective To explore the spatial-temporal distribution characteristics,change characteristics and hot spots of scarlet fever incidence in Beijing,so as to provide evidences for the development of targeted and accurate prevention and control measures.Methods SaTScan software was used for temporal and spatial-temporal scan analysis.Spatial autocorrelation method was used to analyze the spatial clustering features of scarlet fever incidence,and the hot spot analysis was used to explore the hot spots of scarlet fever incidence in Beijing.Results From 2015 to 2020,the incidence showed a decreasing trend from the southwest to the northeast of Beijing.Spatial autocorrelation analysis indicated that the statistically significant clustering features of the spatial distribution were found for the incidence(Moran’s I=0.406,P<0.001),and they were high-high cluster[G_( i )^(∗)=0.005,E(G_( i )^(∗))=0.003].Hot spot analysis showed that there were 48 townships/sub-district in 10 districts are hot spots,which were mainly distributed in the southern and southwestern suburbs of Beijing.And it mainly involved Daxing district(12),Fangshan district(7)and Mentougou district(6).Spatial-temporal scan statistic showed that there was a cluster in the southeast of Beijing from April 2017 to January 2019,and there was a cluster in the southwest of Beijing from April 2017 to December 2019.Conclusions The incidence of scarlet fever in Beijing increased slightly from 2017 to 2019.The junction of Fengtai district,Fangshan district,Mentougou district and Daxing district should be the key areas for the prevention and control.It is necessary to strengthen the control of environment among the key populations in these areas,and carry out preventive measures,publicity and education against respiratory infectious diseases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222