基于RoBERTa的全局图神经网络文档级中文金融事件抽取  被引量:4

Document-level Chinese Financial Event Extraction Based on RoBERTa and Global Graph Neural Network

在线阅读下载全文

作  者:胡婕 何巍 曾张帆 HU Jie;HE Wei;ZENG Zhangfan(School of Computer Science and Information Engineering,Hubei University,Wuhan,Hubei 430062,China)

机构地区:[1]湖北大学计算机与信息工程学院,湖北武汉430062

出  处:《中文信息学报》2023年第2期107-118,共12页Journal of Chinese Information Processing

摘  要:当前基于图神经网络的事件抽取模型无法很好解决长距离依赖问题,并且图的构造中没有考虑实体之间的关系,实体也需要结合文档中的多个句子进行推理。为解决这些问题,该文首先使用预训练模型RoBERTa对文档进行编码并输出所有句子的特征表示和文档的上下文信息嵌入表示,能更好地学习中文金融数据的语义特征。其次,构建一个包含文档节点和实体节点的全局图神经网络使不同节点和边的交互有更丰富的表示,加强了文档和实体信息之间的联系。最后,应用图卷积网络捕获了它们之间的全局交互得到实体级图,在此基础上通过改进的路径推理机制来推断实体之间的关系,更好地解决了长距离文档上下文感知表示和跨句子论元分散问题。在CFA数据集上进行了模型验证,实验结果表明,该文所提模型F1值优于对比模型,综合性能得到有效提升。Current event extraction models based on the graph neural network cannot properly process the long-distance dependency,and the relationships between entities are not considered in the construction of the graph.This paper proposes a document-level Chinese financial event extraction model based on RoBERTa and the global graph neural network.Firstly,the pre-training model RoBERTa is used to encode documents.The feature representation of all sentences and the embedded representation of document context information are output.Then a global graph neural network including document nodes and entity nodes is constructed to strengthen the relationships between documents and entities.Finally,the global interactions between them are captured by the graph convolution network to obtain the entity level graph.An improved path reasoning mechanism is applied to solve the long-distance context-aware representation and cross-sentence argument distribution.The experimental results on CFA dataset show that the proposed model achieves higher F 1 scores than other models.

关 键 词:文档级事件抽取 图神经网络 图卷积网络 注意力机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象