检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:季瑞瑞[1] 谢宇辉 骆丰凯 梅远 JI Ruirui;XIE Yuhui;LUO Fengkai;MEI Yuan(School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China)
机构地区:[1]西安理工大学自动化与信息工程学院,西安710048
出 处:《计算机工程与应用》2023年第8期117-126,共10页Computer Engineering and Applications
基 金:陕西省重点研发计划项目(2020ZDLGY04-04)。
摘 要:目前大多数人脸识别方法依赖于卷积神经网络,通过级联的形式构建多层处理单元,利用卷积操作融合局部特征,忽略了人脸全局语义信息,缺乏对人脸重点区域的关注度。针对上述问题,提出一种基于改进视觉Transformer的人脸识别方法,引入Shuffle Transformer作为特征提取骨干网络,通过自注意力机制以及Shuffle操作捕捉特征图全局信息,建立特征点之间的长距离依赖关系,提高模型的特征感知能力;同时,结合ArcFace损失函数和中心损失函数的特点,设计融合损失作为目标函数,利用类内约束扩大角度间隔,提高特征空间的辨别性。该方法在LFW、CALFW、CPLFW、AgeDB-30和CFP五个具有挑战性的基准测试人脸数据集上分别取得了99.83%、95.87%、90.05%、98.05%、97.23%的平均准确率,能够有效提升人脸特征提取能力,识别效果优于同等规模卷积神经网络。Most face recognition methods rely on convolutional neural networks currently,which construct cascaded multi-layer processing units and fuse local features with convolution operation,result in ignoring the global semantic information and attention to the key areas of the face image.This paper proposes a face recognition method based on improved visual Transformer.Shuffle Transformer is introduced as the backbone network of feature extraction,the global information of feature map is captured through self-attention mechanism and Shuffle operation,and the long-distance dependence relationship is established between feature points to enhance the feature perception ability of the model.At the same time,considering the characteristics of ArcFace loss function and center loss function,the fusion loss is designed as the objective function,which utilizes the intra-class constraints to enlarge the angle interval and increase the discrimination of feature space.The proposed method achieves average accuracy of 99.83%,95.87%,90.05%,98.05%and 97.23%on five challenging benchmark face datasets,LFW,CALFW,CPLFW,AGEDB-30 and CFP.It is proved that the improved model can effectively promote the ability of face feature extraction,and achieve better recognition effect than that of convolutional neural network in the same scale.
关 键 词:人脸识别 视觉Transformer 自注意力机制 ArcFace损失函数
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.22.62