机构地区:[1]北京师范大学遥感科学国家重点实验室,北京100875 [2]北京市陆表遥感数据产品工程技术研究中心北京师范大学地理科学学部遥感与工程研究院,北京100875 [3]中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101 [4]中国科学院大学资源与环境学院,北京100049
出 处:《遥感学报》2023年第2期441-455,共15页NATIONAL REMOTE SENSING BULLETIN
基 金:国家自然科学基金(编号:42192581);国家重点研发计划(编号:2016YFC0500103)。
摘 要:叶面积指数LAI(Leaf Area Index)是表征植被冠层结构特征的一个重要参数,已经成为多个对地观测系统的陆表参数标准产品,也是定量遥感模型的重要输入参数。快速、准确地获取植被LAI对于开展遥感产品验证、促进遥感模型的发展具有极为重要的意义。随着传感器性能与应用软件功能扩展,智能手机已经成为植被LAI测量的新选择。然而,由于手机成像传感器窄视场角的限制,现有算法依赖于叶倾角分布函数为球型分布的假设,即G函数(单位叶面积在垂直于观测天顶角的平面上的投影)恒等于0.5。因而,传统算法无法解决植被叶倾角分布未知的情况。本文提出了一种基于形状匹配的G函数估算方法,基于有限长度方法和多幅影像间隙率,计算样方内的植被冠层聚集指数,利用泊松分布模型分别得到了植被冠层有效叶面积指数(LAI_(eff))和真实叶面积指数(LAI_(tru)),并用黑龙江海伦农场两种农作物类型(玉米和大豆)的破坏性测量得到的时间序列真实LAI数据(LAI_(des))对算法进行了验证。结果表明,算法改进之前的均方根误差(RMSE)分别是0.84(垂直拍摄)和1.33(倾斜57°拍摄),改进后LAI_(eff)(有效LAI)和LAI_(tru)(真实LAI)的RMSE为分别为0.58(垂直拍摄)和0.56(垂直拍摄)。新算法得到的LAI值在时间序列变化趋势上与实测值更为一致。本文算法扩展了农作物LAI测量方法,为从智能手机影像中快速、准确提取植被LAI提供了可能。后续研究将会从分析外部光照环境变化对测量结果的影响和增加不同植被类型的验证数据两个方向进一步开展工作。As an important parameter of vegetation canopy structure,the Leaf Area Index(LAI)has become a standard land surface parameter product for many earth observation systems and an important input parameter for several quantitative remote sensing models.Rapid and accurate acquisition of vegetation LAI is of great significance for the verification of remote sensing products and promotion of the development of remote sensing models.With the improvement of smartphone sensor performance and the functions of application software,smartphones have become a new alternative to vegetation LAI measurement instruments.However,due to the limitation of the narrow Field Of View(FOV)angle of the smartphone camera sensor,the existing algorithm relies on the assumption that the leaf inclination belongs to the spherical distribution,which is that the G function(the projection of a unit leaf area on a plane perpendicular to the observed zenith angle)is equal to 0.5.Therefore,the traditional algorithm cannot solve the problem of unknown leaf inclination distribution.In this paper,a G function estimation method based on shape matching was proposed.Based on the finite length method and the gap fraction of multiple images,the vegetation canopy clumping index in the quadrat was calculated,and the effective LAI(LAI_(eff))and the real LAI(LAI_(tru))were obtained by using the Poisson distribution model.The algorithm was validated by data obtained from destructive measurements(LAI_(des))of two crop types(maize and soybean)at Hailun Farm in Heilongjiang Province,China.The measured time covers the main growth stages of the crop.The results showed that the Root Mean Square Error(RMSE)of the estimated LAI using the algorithm before improvement was 0.84(vertical shooting)and 1.33(tilted 57°shooting),and the RMSE of LAI_(eff)and LAI_(tru)after the improvement was 0.58and 0.56,respectively.The LAI values retrieved by the new algorithm are more consistent with the growing trend of LAI in the time series.The algorithm in this paper extends the measuremen
关 键 词:遥感 智能手机 叶面积指数 多角度间隙率 G函数 聚集指数 有效叶面积指数
分 类 号:P2[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...