检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯凯[1] 刘彤 FENG Kai;LIU Tong(School of Computer and Information Technology,Shanxi University,Taiyuan Shanxi 030006,China)
机构地区:[1]山西大学计算机与信息技术学院,太原030006
出 处:《计算机应用》2023年第4期1198-1205,共8页journal of Computer Applications
基 金:国家自然科学基金资助项目(61502286);山西省基础研究计划项目(20210302123438)。
摘 要:k元n方体具有许多优良特性,已成为多处理器系统最常用的互连网络拓扑结构之一。当系统互连网络中发生故障时,系统子网络的保持能力对系统实际应用至关重要。为了精确度量k元n方体中任意规模子网络的容错能力,研究了有故障发生时k元n方体中k元(n-m)方体子网络的可靠性。当k(k≥3)为奇整数时,在概率故障条件下得出了k元n方体中存在无故障k元(n-m)方体子网络的概率的上界和下界,并给出了该可靠性的一种近似评估方法。实验结果表明,随着顶点可靠性的降低,k元(n-m)方体子网络可靠性的上下界趋于一致;当顶点可靠性较高时,利用近似评估方法得出的结果更为准确。The k-ary n-cube has many good characteristics,and it has become one of the most commonly used interconnection network topologies in multiprocessor systems.The maintenance ability of system subnetworks plays an important role for the practical applications of the systems when failures occur in the interconnection network.In order to accurately measure the fault tolerance of subnetworks with arbitrary size in a k-ary n-cube,the reliability of k-ary(n-m)-cube subnetworks in a k-ary n-cube in the presence of failures was studied.When k was an odd integer and k was bigger than 2,the upper bound and lower bound on the probability that at least one k-ary(n-m)-cube subnetwork was fault-free in a kary n-cube were obtained under the probabilistic fault condition,and an approximate method for evaluating the reliability was proposed.Experimental results show that there is a gradual convergence between the upper bound and lower bound on the kary(n-m)-cube subnetwork reliability as the vertex reliability decreases,and the evaluation result obtained by the approximate method is relatively accurate when the vertex reliability is large.
关 键 词:多处理器系统 互连网络 k元n方体 子网络可靠性 概率故障
分 类 号:TP393.02[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.246.41