检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卞则康 张进 王士同 BIAN Zekang;ZHANG Jin;WANG Shitong(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi 214122)
机构地区:[1]江南大学人工智能与计算机学院,无锡214122
出 处:《模式识别与人工智能》2023年第3期211-224,共14页Pattern Recognition and Artificial Intelligence
基 金:国家重点研发计划项目(No.2022YFE0112400);江苏省自然科学基金项目(No.BK20191331);江苏省教育厅自然科学重点研究项目(No.22KJA520009)资助。
摘 要:为了进一步提升Takagi-Sugeno-Kang(TSK)模糊分类器在不平衡数据集上的泛化能力和保持其较好的语义可解释性,受集成学习的启发,提出面向不平衡数据的深度TSK模糊分类器(A Deep TSK Fuzzy Classifier for Imbalanced Data,ID-TSK-FC).ID-TSK-FC主要由一个不平衡全局线性回归子分类器(Imbalanced Global Linear Regression Sub-Classifier,IGLRc)和多个不平衡TSK模糊子分类器(Imbalanced TSK Fuzzy Sub-Classifier,I-TSK-FC)组成.根据人类“从全局粗糙到局部精细”的认知行为和栈式叠加泛化原理,ID-TSK-FC首先在所有原始训练样本上训练一个IGLRc,获得全局粗糙的分类结果.然后根据IGLRc的输出,识别原始训练样本中的非线性分布训练样本.在非线性分布训练样本上,以栈式深度结构生成多个局部I-TSK-FC,获得局部精细的结果.最后,对于栈式堆叠IGLRc和所有I-TSK-FC的输出,使用基于最小距离投票原理,得到ID-TSK-FC的最终输出.实验表明,ID-TSK-FC不仅具有基于特征重要性的可解释性,而且具有至少相当的泛化性能和语义可解释性.Inspired by ensemble learning,a deep Takagi-Sugeno-Kang fuzzy classifier for imbalanced data(ID-TSK-FC)is proposed to enhance the generalization capability and maintain good linguistic interpretability of TSK fuzzy classifier on imbalanced data.ID-TSK-FC is composed of an imbalanced global linear regression sub-classifier(IGLRc)and several imbalanced TSK fuzzy sub-classifiers(I-TSK-FCs).According to the human cognitive behavior"from wholly coarse to locally fine"and the stacked generalization principle,ID-TSK-FC firstly trains an IGLRc on all training samples to obtain a wholly coarse classification result.Then,the nonlinear training samples in the original training samples are classified according to the output of IGLRc.Next,several I-TSK-FCs are generated using a stacked depth structure on the nonlinear training samples to achieve a locally fine result.Finally,the minimum distance voting principle is applied on the outputs of stacked IGLRc and all I-TSK-FCs to obtain the final output of ID-TSK-FC.The experimental results confirm that ID-TSK-FC not only holds interpretability based on feature importance,but also holds at least comparable generalization capability and linguistic interpretability.
关 键 词:TSK模糊分类器 语义可解释性 深度栈式结构 不平衡数据
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33